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canonical map and present several new examples of surfaces of general type with a high degree
of the canonical map.
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Introduction

The history of the canonical map of surfaces of general type is more than 45 years
long and it has been recently revived after the beautiful survey [27], where the authors
provide an overview of the current state of knowledge on the topic, also outlining a
series of still-open questions.

In 1978, Persson proved that the degree of the canonical map of surfaces of general
type is bounded from above by 36, see [30]. Furthermore, it is known since [9] that if
the degree is more than 27, then q D 0 and pg D 3.

Surfaces of general type with a canonical map of degree d , where 3 � d � 9, can
be constructed quite easily as bi-double covers of a del Pezzo surface of degree d , see
[27, Ex. 4.5]. However, constructing examples with a canonical map of higher degree,
d � 10, becomes more challenging. For a long time, the only examples with a high
degree of the canonical map were the surfaces of Persson [30] with degree 16 and
Tan [34] with degree 12.

Recently, it has been proved that the bound given by Persson is sharp, see [26,32,35].
Recently, in [27], M. Mendes Lopes and R. Pardini revived the topic of the degree of
the canonical map and posed in their survey, among other things, the natural question
[27, Ques. 5.2] if all integers between 2 and 36 can be the degree of the canonical map
of some surfaces of general type having q D 0 and pg D 3.

It is also noteworthy, as mentioned in [9], that the degree of the canonical map
is bounded from above by K2S , so that minimal surfaces with a high degree of the
canonical map have not only q D 0 and pg D 3 but also high values of K2S .

In this paper, we construct surfaces of general type with q D 0, pg D 3, and
23 � K2S � 32 with the ultimate goal of determining the degree of their canonical map
and providing new examples. These surfaces belong to the class of product-quotient
surfaces.

Definition 0.1 ([4, Def. 0.1]). Let us consider a finite group G acting on two smooth
projective curvesC1 andC2, each of genus at least 2. We consider the diagonal action of
G on C1 � C2. Following [13, Rem. 3.10], we assume that the action on Ci is faithful.

If X D .C1 � C2/=G is smooth, which is equivalent to the action of G on the
product C1 � C2 being free, then we call X product-quotient surface isogenous to a
product.

Otherwise, the minimal resolution of singularities S ofX D .C1 �C2/=G is called
product-quotient surface of the quotient model X .

We remind you that K2S D 32 is the highest possible value for product-quotient
surfaces with q D 0 and pg D 3, see Theorem 2.4.

We consider product-quotient surfaces as they have proven to be highly useful tools
in investigating unresolved conjectures in Algebraic Geometry. As a series of examples
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that only deal with regular surfaces, we mention the rigid but not infinitesimally rigid
manifolds [6] constructed by Bauer and Pignatelli that gave a negative answer to a
question of Morrow and Kodaira [28, p. 45], the classification of regular surfaces
isogenous to a product of curves with �.OS / D 2 [23], the families of surfaces with
pg D q D 0 constructed in [4] realizing 13 new topological types and for which Bloch’s
conjecture [11] holds, and the series of papers [2,4,5,7,8] providing a classification of
minimal product-quotient surfaces of general type with pg D q D 0 to give a partial
answer to a still-open problem posed by Mumford in 1980, see [3] and [8, p. 551].

As a first result of this paper, we refine the MAGMA [12] code of [4] and we present
a new version of it which, taking as input a pair of positive integers K2 and �, returns
all regular surfaces S of general type with self-intersection of the canonical class
K2S D K

2 and Euler characteristic �.OS / D �, which are product-quotient surfaces.
Although the original script is relatively easy to be adapted to any fixed value of �

and not only for�D 1 as in [4], it still presents computational time problems as the value
of � increases. We improve the code’s efficiency by introducing new enhancements.
To clarify these improvements, we briefly recall the algebraic description of regular
product-quotient surfaces.

A regular product-quotient surface defines a pair of G-coverings of the projective
line Ci ! Ci=G Š P1 , which can be algebraically characterized by finite sequences
of elements of the group G satisfying certain conditions. These sequences are known
as spherical systems of generators (cf. Definition 1.3). More precisely, any Galois
covering of P1 can be associated with a finite group G, a set of (branch) points, and
a spherical system of generators of the group G. Conversely, these data determine
the Galois covering of P1. Thus, a regular product-quotient surface determines the
following data:
• two sets of (branch) points in P1 and geometric loops around them;
• a finite group G;
• two spherical systems of generators of the group G.

Conversely, these data determine the product-quotient surface.
The geometry of a product-quotient surface can then be investigated by using

the pair of spherical systems of generators associated with the corresponding pair of
G-coverings of P1.

A first novelty of the code is the implementation of the database and the script
FindGenerators developed in [15]. Such database contains one spherical system of
generators of a finite group G for each family of pairwise topologically equivalent
G-coverings C of P1, where the genus of C is g.C / � 27. We use these tools from
[15] to speed up Step 3 in Section 2.1 as well.

The second main novelty is given from the following new result.
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Theorem 0.2. Let V1; V2 be two spherical systems of generators of a finite group G.
Assume that the associated topological types of G-coverings of P1 are different. The
families of product-quotient surfaces associated with this pair of topological types of
G-coverings are in natural bijection with the set of double cosets

BAut.G; V1/nAut.G/=BAut.G; V2/:

This is a short version of the main Theorem 1.20. We also refer to the definitions in
Section 1.2 that make clear the objects presented in Theorem 0.2. The analogous case
of Theorem 0.2 where V1 and V2 have topological equivalent associated G-coverings
of P1 is discussed in Corollary 1.22.

Techniques to establish whether two product-quotient surfaces belong to the same
irreducible family have been extensively studied first in [7, Thm. 1.3] and [8, Prop. 5.2]
in the case of surfaces isogenous to a product, and then in the general case in [4].

Theorem 1.20 seems to be a relevant new result on this problem, very useful in
overcoming the huge amount of calculations that usually occur when adopting those
techniques.

As a consequence of these improvements, we run the above-mentioned script to
obtain a classification of regular product-quotient surfaces S with 23 � K2S � 32 and
�.OS / D 4. What we obtain is the following.

Theorem 0.3. Let S be a regular product-quotient surface with 23 � K2S � 32 and
�.OS / D 4. Then, S is a surface of general type and it realizes one of the families of
surfaces described in Tables 9 to 21 in the appendix of this paper. Moreover, surfaces
in Tables 9 to 20 are minimal.

Apart from the rows of the tables where the number of families N is denoted by ‹,
the classification outlined in Theorem 0.3 yields a total of 1502 irreducible families of
minimal surfaces of general type. Additionally, each family withK2 D 32maps onto an
irreducible component (in the Zariski topology) of the Gieseker moduli space M.4;32/,
which consists of minimal surfaces of general type withK2S D 32 and �.OS /D 4. The
remaining cases, where 23 � K2 � 30, are more delicate and we refer to Section 1.2
and Remark 1.15.

We are interested in computing the degree of the canonical map of product-quotient
surfaces, with a particular focus to those with pg D 3.

Let S be a product-quotient surface given by a pair of curves C1 and C2 and a finite
group G. We prove that the degree of the canonical map of S is determined whenever
we compute the (schematic) base locus of the linear subsystem associated with the
subspace H 2;0.C1 � C2/

G of invariant 2-forms of C1 � C2.
Such subspace splits as a direct sum of subspaces .H1;0.C1/

�˝H1;0.C2/
x�/G, denoted

for short by V�, one for each irreducible character � 2 Irr.G/. We need the following.
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Property (#) A product-quotient surface S satisfies Property (#) if

dimV� ¤ 0 H) deg.�/ D 1

for each � 2 Irr.G/.

Remark 0.4. Property (#) always holds for G abelian group since each irreducible
character of G has degree 1.

Assume that S satisfies Property (#). Then, Corollary 4.21 gives a formula for the
base locus of each linear subsystem associated with the subspace V�, � 2 Irr.G/, and so
of the base locus ofH 2;0.C1 �C2/

G by intersecting them. Furthermore, Corollary 4.21
also implies that the canonical system jKS j of S is spanned by pg divisors that are
union of fibres (with multiplicity) for the natural fibrations S ! Ci=G, i D 1; 2.

In other words, Property (#) allows the degree of the canonical map of the product-
quotient surfaces within a family to be computed, see Section 4.6 for an example. The
degree is constant across the family and depends only on the pair of spherical systems
of generators defining the family.

We also note that the formula for the degree of the canonical map is sharp in the
sense that it cannot be improved by omitting Property (#). This is evidenced by examples
such as no. 376 in Table 1, corresponding to those in [17], which describe regular
product-quotient surfaces that violate this property. Despite sharing the same pair of
spherical systems of generators, these surfaces have canonical maps of different degrees.

We have used the results obtained in Section 4 to produce a MAGMA code that
computes the degree of the canonical map of a product-quotient surface with q D 0
and pg D 3 satisfying Property (#).

We have then selected those surfaces in Theorem 0.3 satisfying Property (#) and
we have computed the degree of their canonical map. We have obtained a series of
examples that are listed in Table 1. The numbers of the column ‘no.’ of Table 1 refer
to the row number of Tables 9 to 21 in the appendix. We refer to the appendix of this
paper where we explain in detail all other information contained in the columns of
Table 1. The examples of Table 1 with a high degree of the canonical map that are to
our knowledge already discovered in the literature are the following:
• Surfaces of no. 42 of Table 1 are the examples presented in [18]. Other examples

with a degree of the canonical map equal to 10 and 14 have been also constructed
in [10] using a different approach.

• Families of surfaces no. 376 having a degree of the canonical map 12, .16; 18/,
.13; 15/, 18 are all those in [17]. Furthermore, we point out that only surfaces no. 1
of [17, Thm. 2.3] satisfy Property (#) thanks to which the degree of their canonical
map was automatically computable.
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No. K2
S Sing.X/ t1 t2 G Id N deg.ˆS /

1 32 26 28 Z3
2 h8;5i 3 8;162

2 32 25 212 Z3
2 h8;5i 3 0;4;8

3 32 34 37 Z2
3 h9;2i 2 6;12

4 32 35 35 Z2
3 h9;2i 1 9

5 32 23; 42 23; 42 G.16;3/ h16;3i 2 16

7 32 22; 42 25; 42 G.16;3/ h16;3i 6 8

9 32 23; 4 212 Z2 �D4 h16;11i 6 0

12 32 26 26 Z2 �D4 h16;11i 1 32

13 32 25 28 Z4
2 h16;14i 13 0;85; 167

14 32 26 26 Z4
2 h16;14i 6 8;163; 322

21 32 22; 42 23; 42 G.32;22/ h32;22i 7 16

28 32 25 26 Z2
2 �D4 h32;46i 4 24

42 32 73 73 Z2
7 h49;2i 7 0;5;7;10;11;142

48 32 22; 42 22; 42 Z5
2 Ì Z2 h64;60i 3 32

87 30 1=22 23; 4 210; 4 Z2 �D4 h16;11i 6 0

88 30 1=22 24; 4 25; 4 Z2 �D4 h16;11i 2 4

119 28 1=24 22; 42 28; 42 Z2 �Z4 h8;2i 1 0

120 28 1=24 25 211 Z3
2 h8;5i 6 02; 43; 8

123 28 1=24 23; 4 211 Z2 �D4 h16;11i 14 0

124 28 1=24 25 26; 4 Z2 �D4 h16;11i 6 8

125 28 1=24 22; 32 34; 62 Z3 �S3 h18;3i 6 62

198 26 1=26 23; 4 29; 4 Z2 �D4 h16;11i 14 0

225 26 1=32; 2=32 3;92 32; 92 Z3 �Z9 h27;2i 6 63; 7;9;10

237 26 1=32; 2=32 2;62 24; 62 Z2
2 �A4 h48;49i 5 8

283 24 1=28 26 210 Z2
2 h4;2i 1 0

284 24 1=28 23; 42 24; 42 Z2 �Z4 h8;2i 1 8

285 24 1=28 22; 42 27; 42 Z2 �Z4 h8;2i 1 2

286 24 1=28 22; 42 24; 44 Z2 �Z4 h8;2i 2 2;8

289 24 1=28 26 27 Z3
2 h8;5i 11 43; 62; 83; 122; 16

290 24 1=28 25 210 Z3
2 h8;5i 14 04; 47; 6;82

295 24 1=28 2;43 44 Z2
4 h16;2i 1 12

296 24 1=28 22; 42 24; 42 Z2
2 Ì Z4 h16;3i 13 83

298 24 1=28 22; 42 24; 42 Z2
2 �Z4 h16;10i 10 84; 124; 162

303 24 1=28 23; 4 210 Z2 �D4 h16;11i 27 0

304 24 1=28 25 27 Z2 �D4 h16;11i 4 16

305 24 1=28 24; 4 26 Z2 �D4 h16;11i 14 82

308 24 1=28 25 27 Z4
2 h16;14i 13 85; 124; 164

309 24 1=28 22; 32 3;64 Z3 �S3 h18;3i 3 0;6

312 24 1=28 2;34; 6 22; 32 Z3 �S3 h18;3i 3 6

376 24 1=28 2;32; 6 3;62 S3 �Z2
3 h54;12i 9 12; .16;18/; .13;15/;18;24

459 24 1=42; 3=42 23; 4 29; 4 Z2 �D4 h16;11i 6 0

475 23 1=33; 2=33 34 36 Z2
3 h9;2i 6 65; 9

477 23 1=33; 2=33 22; 32 24; 3;6 Z2 �A4 h24;13i 2 8

486 23 1=33; 2=33 2;62 24; 3;6 Z2
2 �A4 h48;49i 6 8

Table 1. Product-quotient surfaces with q D 0, pg D 3, and 23 � K2 � 32, whose canonical
map degree has been computed.
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• One of the families of no. 28 in Table 1 having 24 as degree of the canonical map
has already been studied by the author of the present paper and D. Frapporti and
can be found in [16, Sec. 6.3]. We also mention that this family of surfaces does
not satisfy Property (#); hence, in this case, we have had to find the equations of
the pair of curves realizing that family of surfaces and then studied by hand the
degree of their canonical map. To our knowledge, there is only another example in
the literature of a regular surface with a degree of the canonical map equal to 24
[31], which is constructed with a different technique.

• Two of the six families of no. 14 in Table 1 having degree 32 of the canonical map are
discussed in [24]. They are described there differently from us, as Z42-coverings of
P1 � P1 using the language of Pardini’s theory of abelian coverings [29]. Surfaces
of these families are the only examples in the literature with a canonical map of
degree 32, which is also the highest possible degree for product-quotient surfaces
as observed in Remark 4.1.
Furthermore, the authors proved in [24, Prop. 5.3] that these two examples are the
only product-quotient surfaces with G abelian having degree of the canonical map
equal to 32. The same question with G not abelian was still-open and it finds an
answer in the present paper. Indeed, there are other families of surfaces in Table 1
with a canonical map of degree 32.

The paper is organized as follows.
InSection1, wediscussfinitegroupactions on a productof Riemann surfaces.We then

present the main Theorem 1.20, the extended version of Theorem 0.2, crucial to speed
up the classification algorithm for determining the number N of irreducible families.

In Section 2, we generalize [4, Prop. 1.14] to any� 2N and discuss the classification
algorithm.

In Section 3, we prove Theorem 0.3. In particular, we show that all surfaces of
Theorem 0.3 are of general type and those in Tables 9 to 20 are also minimal. We
also discuss the exceptional cases arising from the secondary output of the function
ListGroups.K2; 4/ for each K2 2 ¹23; : : : ; 32º in order to obtain the complete list of
Tables 9 to 21 of the appendix.

In Section 4, we investigate the canonical map of product-quotient surfaces.
Section 5 is devoted to comparing the results obtained with our code to those in the

literature, aiming at identifying any possible discrepancies.
An expanded version of Tables 9 to 21 of the appendix describing all the needed data

to work explicitly with one of the surfaces and a commented version of the MAGMA
codes we used can be found here.

Notation. We will use the basic notations of the theory of smooth complex projective
surfaces; hence, KS is the canonical class of S , pg WD h0.S; KS / is the geometric

https://github.com/Fefe9696/PQ_Surfaces_with_fixed_Ksquare_chi
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genus, q.S/ WD h1.S;OS / is the irregularity, and �.OS / D 1 � q C pg is the Euler
characteristic.

1. Algebraic characterization of families of product-quotient surfaces
given by a pair of G-coverings of P 1

Let S be a product-quotient surface of quotient model .C1 � C2/=G. By a theorem
due to Serrano [33, Prop. 2.2], q.S/ D 0 if and only if Ci=G Š P1.

In other words, pairs of G-coverings of the projective line define regular product-
quotient surfaces. For this reason, let us briefly recall how coverings of P1 can be
described.

1.1. Algebraic characterization of families of G-coverings of P1

Definition 1.1. Let G be a finite group. For a G-covering of P1 we mean a Riemann
surface C together with a (holomorphic) action � of G on C such that the quotient
C=G is P1. Whenever we need to specify the action, we write .C; �/.

There are two notions of equivalence amongG-coverings of P1: we say that C1 and
C2 are topologically equivalent if there exists an orientation preserving homeomorphism
f WC1 ! C2 and an automorphism ' 2 Aut.G/ such that f .g � p/ D '.g/ � f .p/ for
any g 2 G and p 2 C1. We say that C1 and C2 are isomorphic if moreover f is a
biholomorphism.

Consider the set of G-coverings of P1 modulo isomorphism. The topological
equivalence partitions it into equivalence classes, let C be one of them. González
Díez and Harvey showed in [25] that C has a natural structure of connected complex
manifold such that the natural map of C on the moduli space of curves mapping .C; �/
to C is analytic. More precisely, the manifold C is the normalization of its image zC . In
particular, zC is always an irreducible subvariety of the moduli space of curves.

The manifold C can be realized by taking a G-covering C 2 C and moving the
branch points of its covering map C ! P1, which endows C with a new holomorphic
structure. Since the r branch points in P1 can be moved up to projective transformations,
it follows that the dimension of the complex manifold C is r � 3.

Definition 1.2. We let T r.G/ be the collection of all classes of G-coverings of P1

ramified over r points modulo topological equivalence.

From the above discussion, we invite the reader to think of each element of T r.G/ as
a class C of families of G-coverings of P1 pairwise not isomorphic but all topological
equivalent to each other.

We shall give an algebraic description of the elements of T r.G/.
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Definition 1.3. A spherical system of generators (of length r) of G is a sequence of
non-trivial elements Œg1; : : : ; gr � 2 Gr such that

G D hg1; : : : ; gri; and g1 � � �gr D 1:

The sequence Œo.g1/; : : : ; o.gr/� is called signature of Œg1; : : : ; gr �.

Definition 1.4. We set Dr.G/ � Gr to be the collection of all spherical systems of
generators of G of length r .

Remark 1.5. For each signature Œm1; : : : ; mr � consider the polygonal group

T .m1; : : : ; mr/ WD h1; : : : ; r j
m1
1 ; : : : ; mrr ; 1 � � � ri:

There is a natural bijection between the set of orbifold homomorphisms, i.e. surjective
homomorphisms 'WT .m1; : : : ; mr/! G such that any '.i / has order mi , and the
set of spherical systems of generators of signature Œm1; : : : ; mr �.

The bijection associates with any homomorphism ' the spherical system of genera-
tors Œ'.1/; : : : ; '.r/�.

Consider the braid group Br , whose presentation with generators �1; : : : ; �r�1 is

Br D

�
�1; : : : ; �r�1W

�i�j D �j�i ; ji � j j > 1

�i�j�i D �j�i�j ; ji � j j D 1

�
:

The group Aut.G/ �Br acts on Dr.G/ as follows:

‰ � Œg1; : : : ; gr � WD
�
‰.g1/; : : : ; ‰.gr/

�
; ‰ 2 Aut.G/;

�i � Œg1; : : : ; gr � WD Œg1; : : : ; gi�1; gi � giC1 � g
�1
i ; gi ; giC2; : : : ; gr �; �i 2 Br :

The action of the generators �i extends to an action of the entire Br . These self-maps
of Dr.G/ are called Hurwtiz moves. We finally have the following classical result.

Theorem 1.6. The collection of all classes ofG-coverings of P1 ramified over r points
modulo topological equivalence is in bijection with Dr.G/=Aut.G/ �Br :

(1.1) T r.G/ Š Dr.G/=Aut.G/ �Br :

Definition 1.7. A topological type of a G-covering of P1 is an element in T r.G/ Š

Dr.G/=Aut.G/ �Br .

We briefly describe the bijection in Theorem 1.6 and refer to [22, Cor. 5.7] for
a recent proof and further details on the topic. Consider an element in the quotient
Dr.G/=Aut.G/ �Br , and choose a representative Œg1; : : : ; gr �. From Remark 1.5
we obtain an orbifold homomorphism T .m1; : : : ; mr/! G, with mi WD o.gi /. Next,
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we choose a finite set X WD ¹q1; : : : ; qrº on P1, a base point q0 2 P1nX , and a
geometric basis of the fundamental group of P1nX . This basis consists of r distinct
homotopy classes of loops �i in P1nX , each starting at q0 and traveling once around
qi counterclockwise, iD1; : : : ; r . These loops satisfy the relation �1 � � � �rD1, so
T .m1; : : : ; mr/ is the quotient group of �1.P1nX; q0/ by the subgroup normally
generated by �m11 ; : : : ; �

mr
r . The kernel of the composition

�1.P
1
nX; q0/! T .m1; : : : ; mr/! G

defines a unique topological G-covering of P1nX , which extends to a G-covering C
of P1 by the Riemann Existence theorem.

The bijection of Theorem 1.6 maps the class of Œg1; : : : ; gr � modulo Aut.G/ �Br

to the class of C modulo topological equivalence.
Thus, C is a G-covering of P1 with branch points q1; : : : ; qr , having ramification

indices m1; : : : ; mr respectively, for which the Hurwitz formula holds:

(1.2) 2g.C / � 2 D jGj

�
� 2C

rX
iD1

�
1 �

1

mi

��
:

Here, the cyclic groups hgi i (and their conjugates) are the non-trivial stabilizers of the
action of G on C . More precisely, gi is the local monodromy of a point over qi .

Definition 1.8. Let q 2 C 0 D C=G be a branch point of �. The stabilizers of the
points lying over q are cyclic subgroups of G and they are conjugated to each other.
Thus, the order of the stabilizers depends only on q, denoted as mq , the ramification
index.

Let us fix a point p 2 ��1.q/. Given a generator h of Stab.p/, there exists a
coordinate z in C such that the action of h in a neighborhood of p corresponds to
z 7! ız, where ı is one of the mq-roots of the unity. This gives a bijection among
the primitive mq-roots of the unity and the generators of Stab.p/. We denote by local
monodromy of p the unique generator of Stab.p/ acting by z 7! e

2�i
mq z.

Remark 1.9. The local monodromy of another point g � p over q is the conjugate
ghg�1 of h. In other words, the local monodromies of points lying over q are conjugated
to each other.

Let us give an example of how to use Theorem 1.6.

Example 1.10. We are going to compute T 3.S3 � Z23/, the collection of the S3 �
Z23-coverings of P1 up to topological equivalence ramified over 3 points. Up to
apply suitable Hurwitz moves, we can assume that a spherical system of generators
Œ.g1; v1/; .g2; v2/; .g3; v3/� has o.g1/ � o.g2/ � o.g3/. Observe gi ¤ 1; otherwise,
S3 would be generated by only one element, and this is not possible since it is not cyclic.
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The same argument holds for Z23, so that vi ¤ 0. This implies Œg1; g2; g3� 2 D3.S3/,
and Œv1; v2; v3� 2 D3.Z23/. By Hurwitz formula (1.2), then 3

P3
iD1

1
o.gi /

has to be an
integer, which holds only for either o.g1/D o.g2/D o.g3/D 3 or o.g1/D o.g2/D 2,
and o.g3/ D 3. The first case can be excluded since there are no g1; g2; g3 of order 3
generating S3.

Let us focus on the second case, which gives g.C / D 0, so C Š P1. The elements
of order 2 of S3 are �; �� , and ��2, where � is a reflection (transposition) and � is a
rotation (3-cycle) of S3. Since g3 D g�12 g�11 , then g1 ¤ g2; otherwise, g3 D 1 since
g1 and g2 have order two.

Thus, the list of spherical systems with ordered signature Œ2; 2; 3� consists only of
six elements obtained by choosing a distinct pair of g1; g2 in the set ¹�; ��; ��2º. From
here it is easy to see that the action of Aut.S3/ on D3.S3/ is transitive.

On the other hand, it is clear that the action of GL2.Z3/ on D3.Z23/ is transitive.
Thus, Aut.S3�Z23/ acts transitively on D3.S3�Z23/, and from Theorem 1.6 we obtain

T 3.S3 � Z23/ Š
D3.S3 � Z23/

Aut.S3 � Z23/ �B3

D
®��
�; .1; 0/

�
;
�
��; .0; 1/

�
;
�
�2; .2; 2/

��¯
:

By the Hurwitz formula (1.2), the genus of the corresponding G-covering C is g.C /
D 10. Here, C may be described explicitly by equations as follows: we consider the
projective space P3 with homogeneous coordinates x0; : : : ; x3 and define

C W

´
x32 D x

3
0 � x

3
1 ;

x33 D x
3
0 C x

3
1 :

The action �WS3 � Z23 ! Aut.C / is given by�
� i�j ; .a;b/

�
7!
�
.x0 W x1 W x2 W x3/ 7!

�
�i3xŒj � W xŒjC1� W .�1/

j �2aC2i3 x2 W �
2bC2i
3 x3

��
;

where �3 WD e
2�i
3 is the first 3-root of the unity. Finally, the covering map by this action

is

�WC
9W1
��! P1

6W1
��! P1; .x0 W x1 W x2 W x3/ 7! .x0 W x1/ 7!

�
x30x

3
1 W .x

6
0 C x

6
1/=2

�
:

Remark 1.11. As we could expect, it becomes soon computationally difficult to get the
Aut.G/ �Br -orbits of Dr.G/, as r or jGj increases. For this reason, several authors
put an increased effort into the development of an efficient algorithm to compute such
orbits, usually with the help also of a computational algebra system (e.g. MAGMA, [12]).
A big step forward in this direction is given for instance in [15], where the authors
collect in a database a representative for each orbit of spherical systems of generators
of fixed genus g � 27.
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We use this database and their script FindGenerators to speed up Step 3 of Section 2.1
and in combination with Theorem 1.20 to give improvements in Step 5.

1.2. Families of product-quotient surfaces from a pair of coverings of P1

In this subsection, we study how to realize all families of product-quotient surfaces
obtained by a pair of topological types of G-coverings of P1.

Definition 1.12. Let us call by T r;s.G/ the collection of all families of regular product-
quotient surfaces, whose associated (ordered pair of) G-coverings �i WCi ! P1 are
branched over r and s points, respectively.

Remark 1.13. In the above definition, the order of C1 and C2 is relevant. Thus,
exchanging them gives a natural bijection �W T r;s.G/! T s;r.G/ which sends families
to isomorphic families of surfaces.

In the previous section, we have seen that from a spherical system of generators
in Dr.G/ we can define an associated G-covering of P1, which realizes a family
by moving the r branch points. Hence, a pair belonging to Dr.G/ �Ds.G/ gives a
product-quotient surface, which realizes a family by moving respectively the r and
s branch points of the attached G-coverings of P1. However, two pairs of spherical
systems of generators in Dr.G/ �Ds.G/ may determine the same family of product-
quotient surfaces; this occurs when they belong to the same orbit under the action of a
certain group (see [2, 4] for more details).

Proposition 1.14. There is a natural bijection between T r;s.G/ and
Dr.G/ �Ds.G/

Aut.G/ �Br �Bs

;

where Aut.G/ acts simultaneously on both factors, whilst Br and Bs act on the first
and second factor, respectively.

Remark 1.15. We point out that each of the families of T r;s.G/maps onto an algebraic
subset of the Gieseker moduli space, but the images of two different families may not
be distinct. This is because we are considering an equivalence relation among product-
quotient surfaces which is weaker than the equivalence relation being isomorphic.

However, as proved in [8, Prop. 5.2], regular product-quotient surfaces S1 and S2
isogenous to a product are in the same irreducible component of the Gieseker moduli
space if and only if their pair of spherical systems of generators share the same orbit
by the action of Aut.G/ �Br �Bs , possibly up to exchanging the factors.

To each family of product-quotient surfaces we have a naturally associated pair of
topological types of G-coverings, thus giving a surjective map

T r;s.G/� T r.G/ � T s.G/:
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By Proposition 1.14 and Theorem 1.6 we obtain the following commutative diagram:

(1.3)

T r;s.G/ Dr .G/�Ds.G/
Aut.G/�Br�Bs

T r.G/ � T s.G/ Dr .G/
Aut.G/�Br

�
Ds.G/

Aut.G/�Bs
:

�

Here, � is defined as the unique map making the diagram commutative. Such � sends
the class of a pair of spherical systems of generators ŒV1; V2� to the pair of classes
.ŒV1�; ŒV2�/.

We are going to find the inverse image of each point .ŒV1�; ŒV2�/ by � , which
translates in determining each family of product-quotient surfaces afforded by the pair
of topological types of G-coverings, the first given by ŒV1�, and the second by ŒV2�.

Definition 1.16. LetV be a spherical system ofgenerators of length r ofafinite groupG.
The group of automorphisms of braid type on V is the following subgroup of Aut.G/:

BAut.G; V / WD
®
'2Aut.G/W 9 � 2Br such that ' � V D� � V

¯
:

Since the action of an automorphism of G commutes with the action of a braid
on a spherical system of generators, then it is immediate to see that BAut.G; V / is a
subgroup of Aut.G/: given '1; '2 2 BAut.G; V /, then

.'1 ı '
�1
2 / � V D '1.�

�1
2 � V / D �

�1
2 � .'1 � V / D .�

�1
2 �1/ � V

for some �1; �2 2 Br . Thus, '1 ı '�12 2 BAut.G; V /.

Remark 1.17. If we replace V by V 0 in its Aut.G/ �Br -orbit, let us say

V 0 WD .‰; �/ � V;

then the subgroup BAut.G; V 0/ is conjugate to BAut.G; V /:

BAut.G; V 0/ D ‰ ıBAut.G; V / ı‰�1:

Note that ‰ 2 BAut.G; V / implies BAut.G; V 0/ D BAut.G; V /.

Definition 1.18. Let V1 and V2 be a pair of spherical systems of generators of G. We
will say that two automorphismsˆ;‰2Aut.G/ are .V1; V2/-related, and we will write

ˆ �V1;V2 ‰

if there exist '1 2 BAut.G; V1/, '2 2 BAut.G; V2/ such that

‰ D '1 ıˆ ı '2:

The relation �V1;V2 is clearly an equivalence relation on Aut.G/. We denote by
QAut.G/V1;V2 the quotient of Aut.G/ by �V1;V2 .
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In other words, QAut.G/V1;V2 is the set of double cosets

QAut.G/V1;V2 D BAut.G; V1/nAut.G/=BAut.G; V2/:

Remark 1.19. Let V 01, V
0
2 be two spherical systems of generators belonging to the same

orbits of V1 and V2, respectively, namely, V 01 D .‰1; �1/ � V1 and V 02 D .‰2; �2/ � V2.
Then, by Remark 1.17, we have

ˆ �V1;V2 ‰ ” ‰1 ıˆ ı‰
�1
2 �V 01;V

0
2
‰1 ı‰ ı‰

�1
2 :

Moreover, the bijection ˆ 7! ‰1 ıˆ ı‰
�1
2 induces a bijection among the quotients

(1.4) QAut.G/V1;V2 $ QAut.G/V 0
1
;V 0
2
; Œˆ� 7! Œ‰1 ıˆ ı‰

�1
2 �

which only depends on V1; V2; V 01; V
0
2 and not on the choice of ‰1; ‰2.

We can finally state and prove the main theorem of this section.

Theorem 1.20. Let � be the map ŒV1; V2� 7! .ŒV1�; ŒV2�/ defined at (1.3). Let us fix a
point

x 2
Dr.G/

Aut.G/ �Br

�
Ds.G/

Aut.G/ �Bs

;

and let us choose a pair of spherical systems of generators V1 and V2 such that
x D .ŒV1�; ŒV2�/. The following hold:

(1) Given ˆ 2 Aut.G/, then

ŒV1; ˆ � V2� 2
Dr.G/ �Ds.G/

Aut.G/ �Br �Bs

depends only on the class of ˆ in QAut.G/V1;V2 .

(2) The map

QAut.G/V1;V2 ! ��1.x/

Œˆ� 7! ŒV1; ˆ � V2�
(1.5)

is bijective. In particular, j��1.x/j D jQAut.G/V1;V2 j.

(3) If we replace V1 by V 01 in the same Aut.G/ �Br -orbit, and V2 by V 02 in the same
Aut.G/ �Bs-orbit, then the bijective maps in (1.4) and (1.5) form a commutative
triangle

QAut.G/V 0
1
;V 0
2

��1.x/:

QAut.G/V1;V2
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Proof. (1) Let us consider an automorphism ˆ0 D '1 ıˆ ı '2 in the same class of
ˆ in QAut.G/V1;V2 , where '1 2 BAut.G; V1/ and '2 2 BAut.G; V2/:

ŒV1; ˆ
0
� V2� D

�
V1; .'1 ıˆ ı '2/V2

�
D
�
'�11 � V1; .ˆ ı '2/ � V2

�
D
�
��11 � V1; ˆ � .�2 � V2/

�
D
�
��11 � V1; �2 � .ˆ � V2/

�
D ŒV1; ˆ � V2�:

(2) Point (1) proves that the map (1.5) is well defined. Let us consider an element
ŒV 01; V

0
2�2�

�1.x/; hence, V 01 is in the same orbit of V1 and V 02 is in the same orbit of V2.
We write

V 01 D .‰1; �1/ � V1 and V 02 D .‰2; �2/ � V2;

where .‰1; �1/ 2 Aut.G/ �Br , and .‰2; �2/ 2 Aut.G/ �Bs . Then,

ŒV 01; V
0
2� D Œ‰1 � V1; ‰2 � V2� D

�
V1; .‰

�1
1 ı‰2/ � V2

�
:

This proves that the map (1.5) is surjective.
Let us consider Œˆ1� and Œˆ2� in QAut.G/V1;V2 such that

ŒV1; ˆ2 � V2� D ŒV1; ˆ1 � V2�:

We are going to show that Œˆ2� D Œˆ1�. Since .V1; ˆ2 � V2/ and .V1; ˆ1 � V2/ share
the same orbit, then there exists .‰; �1; �2/ 2 Aut.G/ �Br �Bs such that

.V1; ˆ2 � V2/ D .‰; �1; �2/ � .V1; ˆ1 � V2/:

Then, we have

‰ � V1 D �
�1
1 � V1 and .ˆ�11 ı‰

�1
ıˆ2/ � V2 D �2 � V2:

Therefore, defining '1 WD‰2BAut.G;V1/ and '2 WDˆ�11 ı‰
�1 ıˆ22BAut.G;V2/,

we have
ˆ2 D '1 ıˆ1 ı '2;

which proves Œˆ2� D Œˆ1�, and so that the map (1.5) is injective.
(3) It is an immediate consequence from the definition of the map (1.4).

Theorem 1.20 gives not only a perfect enumeration of the families of regular product-
quotient surfaces corresponding to an ordered pair of topological types of G-coverings
of the projective line .C1; �1/ and .C2; �2/ but also how to realize these families.
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Indeed, given ‰ 2 Aut.G/, then .C1; �1/ and .C2; �2 ı ‰�1/ define an irreducible
family of product-quotient surfaces. Theorem 1.20 translates as each family given
by topological types of C1 and C2 is obtained in this way via an automorphism of
Aut.G/. Furthermore, two automorphisms ‰1 and ‰2 define the same family if they
are .V1; V2/-related, or equivalently if their class in QAut.G/V1;V2 is the same.

Thus, all families may be realized by a pair .C1; �1/ and .C2; �2 ı ‰�1/ via an
automorphism representative ‰ for each class in QAut.G/V1;V2 .

We consider ordered pairs of topological types because of Remark 1.13, where
we have observed that exchanging C1 and C2 defines an involution on

S
T r;s.G/

connecting isomorphic families.
If we are interested in counting the families given by two different topological

types of G-coverings, then it is sufficient to choose an order on them and then apply
Theorem 1.20.

However, to enumerate the families of product-quotient surfaces associated with
twice the same topological type, we need to study how the exchange of the factors acts
on QAut.G/V;V .

Proposition 1.21. The exchange of the factors acts onQAut.G/V;V as the involution

QAut.G/V;V ! QAut.G/V;V ; Œˆ� 7! Œˆ�1�:

Proof. The exchange of the factors is a map from ��1.ŒV �; ŒV �/ to itself sending each
ŒV;ˆ � V � to Œˆ � V; V � D ŒV;ˆ�1 � V �.

Corollary 1.22. Let C1 and C2 be two G-coverings of P1 and let V1 and V2 be
spherical systems of generators of them. Then, the cardinality of the set of families of
product-quotient surfaces given by the topological types of C1 and C2 is equal to

(1) the cardinality of QAut.G/V1;V2 if C1 and C2 are not topological equivalent;

(2) the cardinality ofQAut.G/V1;V1=.ˆ 7! ˆ�1/ if C1 and C2 are topological equiv-
alent.

Let us give an example how we use Theorem 1.20 and Corollary 1.22.

Example 1.23. LetGDS3 �Z23. We are going to compute all regular product-quotient
surfaces with quotient model .C1 � C2/=G where the G-coverings �1WC1 ! P1 and
�2WC2 ! P1 are both ramifying over three points.

Keeping the notation of Example 1.10, we have seen there that C1 and C2 are
described by

V WD
��
�; .1; 0/

�
;
�
��; .0; 1/

�
;
�
�2; .2; 2/

��
:

We need to compute the subgroup BAut.G; V / � Aut.S3 � Z23/.
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Firstly, we note that

Aut.S3 � Z23/ Š Aut.S3/ � GL2.Z3/:

Hence, every element of BAut.G; V / can be written as a pair .‰; M/, where
‰ 2 Aut.S3/, and M 2 GL2.Z3/.

The action of B3 on Œ.1; 0/; .0; 1/; .2; 2/� permutes its entries since Z23 is abelian.
Therefore, the automorphisms M 2 GL2.Z3/ of braid type on it are those permuting
its entries. Such automorphisms belong to the subgroup hM1;M2i Š S3 generated by

M1 WD

 
0 1

1 0

!
M2 WD

 
2 0

2 1

!
:

Let .‰;M/ be of braid type onV , and let � be a braid in B3 such that .‰;M/ �V D � �V .
We observe that the signature of V is Œ6; 6; 3�: since the third number is different from
the other two, and the automorphisms preserve the order, then the permutation image
of � in S3 fixes the number three. This implies thatM fixes .2; 2/, soM 2 hM1i Š Z2.
Therefore,

BAut.G; V / � Aut.S3/ � hM1i Š S3 � Z2:

Let us choose two generators of Aut.S3/: let ‰1 be the inner automorphism given by
� and let ‰2 be the inner automorphism induced by �2. We observe that .‰1; Id/ and
.‰2;M1/ are of braid type on V since they act on V , respectively, as the braids �1�22�1
and �1. Since they generate the whole Aut.S3/ � hM1i, then

BAut.G; V / D Aut.S3/ � hM1i Š S3 � Z2:

Now, we can compute QAut.S3 � Z23/V;V , which as observed is the set of double
cosets

QAut.S3 � Z23/V;V D BAut.G;V /n
.Aut.S3/�GL2.Z3//=BAut.G;V /:

Since BAut.G; V / D Aut.S3/ � hM1i contains the subgroup Aut.S3/ � ¹1º, which
is normal in Aut.S3/ � GL2.Z3/, then we have the following natural identification:

(1.6) QAut.S3 � Z23/V;V Š hM1in
GL2.Z3/=hM1i:

More precisely, the correspondence sends Œ.IdS3 ; A/�$ ŒA�.
From diagram (1.3) and Theorem 1.20, we can conclude that

T 3;3.S3 � Z23/ Š QAut.G/V;V Š hM1in
GL2.Z3/=hM1i:

However, we are majorly interested in finding the set of families of product-quotient
surfaces given by the pair .V; V /. As proved in Corollary 1.22, it is sufficient to
determine

QAut.G/V1;V1=.ˆ 7! ˆ�1/:
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This is the quotient of GL2.Z3/ by the simultaneous action of the three involutions
A 7!M1A, A 7! AM1, and A 7! A�1. These involutions generate a group of order 8
isomorphic to a dihedral group. Hence,

(1.7) QAut.G/V1;V1=.ˆ 7! ˆ�1/ Š GL2.Z3/=D4:

We have proved that families of regular product-quotient surfaces with quotient model
.C1 � C2/=G where G D S3 �Z3, �1WC1! P1 and �2WC2! P1 are both ramified
over three points are in bijection with GL2.Z3/=D4, a set of cardinality 10. More
precisely, these families are realized as follows: we consider two copies .C1; �/, .C2; �/
of the same curve .C; �/ defined in Example 1.10 which is described by the algebraic
data V . This pair of curves define a product-quotient surface realizing a first family.
All the other families are realized by product-quotient surfaces each defined by a pair
.C1; �/ and .C2; � ı .Id;A�1//, whereA is a representative of a class of GL2.Z3/=D4.

2. Finiteness of the classification problem

In this section, we follow step-by-step the same arguments of [4] and generalize the
results of [4, Prop. 1.14] by removing the assumption � D 1 there.

As a byproduct, we describe an algorithm that produces for any fixed pair of positive
integers K2 and � all regular product-quotient surfaces S of general type with self-
intersection of the canonical class K2S D K

2 and Euler characteristic �.OS / D �.
Let C1 and C2 be two Riemann surfaces of respective genera g1; g2 � 2 and let G

be a finite group acting faithfully on both of them. We consider the diagonal action
of G on the product C1 � C2, which gives a product-quotient surface S , the minimal
resolution of singularities of the quotient model X WD .C1 � C2/=G.

The singular points of the quotient modelX are images of points in C1 �C2 having
non-trivial stabilizer by the diagonal action of G. Hence, X has only finitely many
singular points which are cyclic quotient singularities.

A cyclic quotient singularity of type 1
n
.1;a/ is a singular point realized as the quotient

of C2 by the action of the diagonal linear isomorphism of eigenvalues �n D exp 2�i
n

and �an , with gcd.n; a/ D 1.
We can attach to X the so-called basket of singularities.

Definition 2.1 ([4, Def. 1.2]). A representation of the basket of singularities of X is
a multiset

B.X/ WD

²
� �

�
1

n
.1; a/

�
W X has exactly � singularities of type

1

n
.1; a/

³
:
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We use the word “representation” since X may have several representatives of its
basket, essentially since a singularity of type 1

n
.1; a/ is isomorphic to a singularity of

type 1
n
.1; a0/, where either a D a0 or aa0 � 1 mod n. This motivates the following

definition.

Definition 2.2 ([4, Def. 1.4]). Consider the set of multisets of the form²
� �

�
1

n
.1; a/

�
W a; n; � 2 N; a < n; gcd.a; n/ D 1

³
;

and define the equivalence relation given by “ 1
n
.1; a/ is equivalent to 1

n
.1; a0/” if aD a0

or aa0 � 1 mod n. A basket of singularities is then an equivalence class.

In [4], the authors used the minimal resolution of a cyclic quotient singularity as
Hirzebruch–Jung string to compute these correction terms to the self-intersection of
the canonical class and the topological characteristic of the product-quotient surface S .
We need to remember these correction terms.

Definition 2.3 ([4, Def. 1.5]). Letx be a singularity of type 1
n
.1;a/with gcd.n;a/D 1,

and let 1 � a0 < n be the inverse of a modulo n, a0 D a�1. Write n
a

as a continued
fraction

n

a
D b1 �

1

b2 �
1

b3����

D Œb1; : : : ; bl �:

We define the following correction terms:
• kx WD k.

1
n
.1; a// D �2C 2CaCa0

n
C
Pl
iD1.bi � 2/ � 0;

• ex WD e.
1
n
.1; a// D l C 1 � 1

n
� 0;

• Bx WD 2ex C kx .

Let B be the basket of singularities of X . We define

k.B/ WD
X
x2B

kx; e.B/ WD
X
x2B

ex; B.B/ WD
X
x2B

Bx :

Theorem 2.4 ([4, Prop. 1.6 and Cor. 1.7]). Let �WS ! X be the minimal resolution
of the singularities of X D .C1 � C2/=G. Then, the self-intersection of the canonical
class of S and its topological Euler characteristic are equal to

K2S D
8.g1 � 1/.g2 � 1/

jGj
� k.B/; and e.S/ D

4.g1 � 1/.g2 � 1/

jGj
C e.B/:

Furthermore, it holds that

K2S D 8�.OS / �
1

3
B.B/:
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From now on we shall restrict to product-quotient surfaces S of general type which
are regular, namely, Ci=G Š P1.

As explained in Section 1.2, we shall describe S in a pure algebraic way by using a
pair of spherical systems of generators

Œg1; : : : ; gr � and Œh1; : : : ; hs�

of the pair of G-coverings C1 and C2 of P1.

Remark 2.5. In [4, Sec. 1.2] is shown how to determine the number of cyclic quotient
singularities (and their types) of the quotient model X D .C1 � C2/=G from a pair of
spherical systems of generators.

In this way, we read the basket of singularities of S from the pair Œg1; : : : ; gr � and
Œh1; : : : ; hs�, and then determine the invariants K2S and �.OS / by using Theorem 2.4.

We state the preliminaries to extend [4, Prop. 1.14] to any positive integer �.

Definition 2.6. Fix an r-tuple of natural numbers t WD Œm1; : : : ;mr �, and a basket of
singularities B. Then, we associate with these the following numbers:

‚.t/ WD �2C

rX
iD1

�
1 �

1

mi

�
I ˛.t;B; �/ WD

12�C k.B/ � e.B/

6‚.t/
:

We recall the following definition.

Definition 2.7. The minimal positive integer Ix such that IxKX is Cartier in x is
called the index of the singularity x.

The index of X is the minimal positive integer I such that IKX is Cartier. In
particular, I D lcmx2SingXIx .

As remarked in [4], the index of a cyclic quotient singularity 1
n
.1; a/ is

Ix D
n

gcd.n; aC 1/
:

By [4, Lem. 1.10], fixing a pair of positive integers .K2; �/, there are only finitely many
baskets of singularities B for which there exists a product-quotient surface S with
invariants K2S D K

2, �.OS / D �, and having a quotient model with a representation
of the basket of singularities equal to B.

We need to extend [4, Prop. 1.14] to any positive integer � to bound, for fixed K2,
�, and B, the possibilities for
• jGj,
• t1 WD Œm1; : : : ; mr �,
• t2 WD Œn1; : : : ; ns�,
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of a product-quotient surface S with K2S D K
2, �.S/ D �, and basket of singularities

of the quotient model X D .C1 � C2/=G equal to B such that the pair of spherical
systems of generators of C1 and C2 have, respectively, signature t1 and t2.

Proposition 2.8. Fix a pair .K2; �/ 2Z�Z, and fix a possible basket of singularities
B for .K2; �/. Let S be a product-quotient surface of general type such that

(i) K2S D K
2;

(ii) �.S/ D �;

(iii) the basket of singularities of the quotient model X D .C1 � C2/=G equals B.

Then,

(a) g.C1/ D ˛.t2;B; �/C 1, g.C2/ D ˛.t1;B; �/C 1;

(b) jGj D 8˛.t1;B;�/˛.t2;B;�/

K2Ck.B/
;

(c) r; s � K2Ck.B/
2

C 4;

(d) mi divides 2˛.t1;B; �/I , and nj divides 2˛.t2;B; �/I ;

(e) there are at most jBj=2 indices i such that mi does not divide ˛.t1;B; �/, and
similarly for the nj ;

(f) mi �
1CI K

2Ck.B/
2

f .t1/
, ni �

1CI K
2Ck.B/
2

f .t2/
, where I is the index of X , and f .t1/ WD

max.1
6
; r�3
2
/, f .t2/ WD max.1

6
; s�3
2
/;

(g) except for at most jBj=2 indices i , the sharper inequalitymi �
1CK

2Ck.B/
4

f .t1/
holds,

and similarly for the nj .

Remark 2.9 ([4, Rem. 1.15]). Note that (b) shows t1 and t2 determine the order of
G. (c) and (f) imply there are only finitely many possibilities for the signatures t1; t2.
Instead, (d), (e), and (g) are strictly necessary to obtain an efficient algorithm.

Proof. The proof is analogous to the one in [4, Prop. 1.14].

2.1. Description of the classification algorithm

Fixing a pair .K2; �/ 2 N �N, the next goal is to write a MAGMA script to find all
minimal regular surfaces S of general type with K2S D K

2, and �.S/ D �, which are
product-quotient surfaces. A commented version of the MAGMA code is available
here.

We describe here the strategy, and explain how the most important scripts work.
Most of the scripts are the modification of those in [4]. Since those scripts were written
under the assumption � D 1, we generalize all of them to allow any value of �. In the
Introduction of the present paper, we indicate the other main improvements we did.

https://github.com/Fefe9696/PQ_Surfaces_with_fixed_Ksquare_chi
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We fix a couple .K2; �/. Note that by the minimality of S , and by Theorem 2.4, then
K22¹1; : : : ; 8�º, and the caseK2D8� corresponds to surfaces isogenous to a product.

Step 1. The script Baskets lists all the possible baskets of singularities B for .K2; �/.
Indeed, there are only finitely many of them by [4, Lem. 1.10]. The input is B.B/ D
3.8��K2/, so to get for instance all baskets for .K2;�/D .28;4/, we need Baskets.12/.

Step 2. From Proposition 2.8, once we know the basket of singularities of X D
.C1 � C2/=G, then there are finitely many possible signatures of a pair of spherical
systems of generators of C1 and C2. ListOfTypes computes them using the inequal-
ities in Proposition 2.8. Here, the input is K2, and �, so ListOfTypes first computes
Baskets.3.8� �K2//, and then computes for each basket all numerically compatible
signatures. The output is a list of pairs, the first element of each pair being a basket,
and the second element being the list of all signatures compatible with that basket.

Step 3. Every surface produces two signatures, one for each curve Ci , both compatible
with the basket of singularities of X ; if we know the signatures and the basket, then
Proposition 2.8 (b) tells us the order of G. ListGroups, whose input is K2, and �,
first computes ListOfTypes.K2; �/. Then, for each pair of signatures in the output, it
determines the order of the group. Next, it searches among the groups of a given order
whose groups admit appropriate spherical systems of generators corresponding to both
signatures. Here, we use the database in [15] if we are in one of the cases classified
there; otherwise, we use the function FindGenerators developed in the work [15].

For each affirmative answer, it stores the triple (basket, pair of signatures, group) in
a list, which is the main output.

The script has some shortcuts:
• Let t1 and t2 be the pair of signatures and let T .t1/ and T .t2/ be their respective

polygonal groups (see Remark 1.5). Then, the order of the abelianization Gab of G
has to divide the order of the abelianization of T .t1/ and T .t2/:

(2.1) jGabj divides
ˇ̌
T .t1/

ab
ˇ̌
;
ˇ̌
T .t2/

ab
ˇ̌
:

Indeed, the appropriate orbifold (surjective) homomorphisms T .t1/ ! G and
T .t2/! G induce surjective homomorphisms

T .t1/
ab
! Gab; T .t2/

ab
! Gab:

Hence, ListGroups checks first if G satisfies (2.1): if not, this case does not occur.
• If the pair of signatures t1 and t2 returns polygonal groups T .t1/ and T .t2/ such

that the orders of their abelianization are coprime numbers, then G is forced to be a
perfect group. This follows directly from the condition (2.1).
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MAGMA knows all perfect groups of order � 50000, and then ListGroups checks
first if there are perfect groups of the right order: if not, this case cannot occur.

• If

– either the expected order of the group is 1024 or bigger than 2000, which are
not in the MAGMA database of finite groups,

– or the order is a number as, e.g., 1728, where there are too many isomorphism
classes of groups,

then ListGroups just stores these cases in a list, secondary output of the script. These
“exceptional” cases have to be considered separately.

Step 4. ExistingSurfaces runs on the output of ListGroups.K2; �/ and throws away all
triples giving rise only to surfaces whose singularities do not correspond to the basket.

Step 5. Each triple (basket, pair of signatures, group) belonging to the output
ExistingSurfaces.K2; �/ gives many different pairs of compatible spherical systems of
generators. On them there is the action of Aut.G/ �Br �Bs described in Section 1.2.
Therefore, FindSurfaces uses Theorem 1.20 and Corollary 1.22 to pick up only one
pair of spherical systems of generators for each family of product-quotient surfaces
compatible with the triple (basket, pair of signatures, group). Thus, the output is a list
of (basket, sph1, sph2, group), where sph1 and sph2 are spherical systems of group
compatible with the two signatures and the basket.

3. Classification of regular product-quotient surfaces with 23 � K2 � 32

and � D 4

In this section, we prove the main Theorem 0.3 presented in the introduction.
We have run the function FindSurfaces described in Section 2.1 on each triple of

the output of ExistingSurfaces.K2; �/, where K2 2 ¹23; : : : ; 32º and � D 4. This has
given all the families in Tables 9 to 21 of the appendix with the only exception of
families no. 267 and 544, which are the only cases that occurred on those skipped by
ListGroups and stored in its secondary output.

Thus, to prove the main Theorem 0.3, it remains to show that

(1) among all the exceptional cases skipped by ListGroups, only two cases occur, which
are no. 267 and 544;

(2) all the obtained families of Tables 9 to 21 are of general type and those on Tables 9
to 20 are also minimal.

This will be the content of Sections 3.1 and 3.2.
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3.1. The exceptional cases

For eachK2 2 ¹23; : : : ; 32º, the list of cases skipped by ListGroups.K2; 4/ and stored
in its secondary output can be found here.

We present the main theorem of this subsection.

Theorem 3.1. There are exactly two groups G admitting an appropriate pair of
spherical systems of generators compatible with one of the triples of the secondary
output of ListGroups.K2; 4/, for K2 2 ¹23; : : : ; 32º:

No. K2S Sing.X/ t1 t2 G N

267 26 1=4; 1=22; 3=4 32; 4 32; 4 G.1944; 3875/ 2

544 24 1=6; 1=22; 5=6 2; 4; 6 2; 6; 8 G.768; 1086051/ 2

A proof of this theorem can be found in the HowToRemoveTocheck.txt files on
the webpage linked above, with one file for each K2 2 ¹23; : : : ; 32º. More precisely,
these files provide a step-by-step explanation of how to exclude the cases omitted by
ListGroups until only the two cases mentioned above are found to actually occur.

However, to illustrate the main strategy we have employed to exclude these cases,
here we only discuss those with K2 D 32, which already consist of a significant list of
152 cases. Therefore, we need to prove the following theorem.

Theorem 3.2. No one of the cases skipped by ListGroups.32; 4/ gives a product-
quotient surface S with K2S D 32 and �.OS / D 4.

Proof. It follows from Propositions 3.5, 3.8, 3.10, and Remark 3.13 below.

The rest of this section is devoted to giving a proof of the series of propositions
used to prove Theorem 3.2.

We use two MAGMA functions to prove these propositions and more in general
Theorem 3.1:
• HowToExclude takes in input a list of triples as those of the second output of

ListGroups which have an order of the group different from 1024 and less than or
equal to 2000. For each triple (basket, .t1; t2/, ord) of the list, it returns those groups
with order ord admitting a pair of spherical systems of generators of signatures t1
and t2. This function uses as ListGroups the database and function FindGenerators
in [15].

• The function HowToExcludePG works similarly such as HowToExclude. Hence,
it takes in input a list of triples (basket, .t1; t2/, ord), where ord is � 50000, and
returns those groups with order ord that are perfect and admit a pair of spherical
systems of generators of signatures t1 and t2.

https://github.com/Fefe9696/PQ_Surfaces_with_fixed_Ksquare_chi
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Remark 3.3. To exclude the cases skipped by ListGroups.32; 4/, and more generally
the cases mentioned in Theorem 3.1, the main strategy is to assume their existence by
contradiction and construct from them a new product-quotient surface by a smaller
normal subgroup H E G with a new pair of signatures derived from the previous
data. This process is repeated until the order of the group H becomes sufficiently
small to apply the code HowToExclude on H and the new pair of signatures. If the
code excludes this case, then the initial case must also be excluded. Otherwise, we run
ExistingSurfaces to verify that the basket of singularities of the new product-quotient
surface is compatible with the basket of singularities of the initial case.

Note that the basket of singularities for the new surfaces constructed at each inter-
mediate step is always empty when the initial case has an empty basket, as in the case
with K2 D 32. For this reason, we will avoid repeating the basket of singularities for
intermediate steps in such cases, as it remains empty throughout.

On the other hand, for the remaining cases withK2 2 ¹23; : : : ; 30º, as discussed in
the .txt files on the webpage, we point out that the intermediate steps may involve a
non-empty basket of singularities. In these situations, we must run ExistingSurfaces
for the group H and the new pair of signatures, considering all possible intermediate
baskets compatible with the initial one.

Notation. Given positive integers a and p, the expression ap represents the sequence
consisting of the same element a repeated p times. For example, the sequence Œ32; 43�
corresponds to Œ3; 3; 4; 4; 4�.

Proposition 3.4. Let G be a finite group that admits a spherical system of generators
of signature Œa1; a2; a3; b1; : : : ; bk�. Let us suppose G have a normal subgroup H of
index a prime number p � 2 and that p does not divide b1; : : : ; bk . Then,
• if p does not divide only one among a1; a2; a3, e.g. p − a3, then H admits a

spherical system of generators of signature Œa1=p; a2=p; ap3 ; b
p
1 ; : : : ; b

p

k
�;

• if p divides each one of a1; a2; a3, then H admits either a spherical system of
generators having one of the following signatures:

(1) Œa1=p; a2=p; ap3 ; b
p
1 ; : : : ; b

p

k
�;

(2) Œa1=p; ap2 ; a3=p; b
p
1 ; : : : ; b

p

k
�;

(3) Œap1 ; a2=p; a3=p; b
p
1 ; : : : ; b

p

k
�;

or if p ¤ 2, then there exists H -covering of a curve of genus p�1
2

whose branch
locus has ramification indices a1=p; a2=p; a3=p; bp1 ; : : : ; b

p

k
.

Proof. By assumption, G has a spherical system of generators Œg1; g2; g3; h1 : : : ; hk�
which defines a G-covering C ! P1 whose branch locus v1; v2; v3; q1; : : : ; qk 2 P1
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has ramification indices a1; a2; a3; b1; : : : ; bk , respectively. Furthermore, the existence
of a normal subgroupH of indexp gives the following triangular commutative diagram:

C

C=H P1:

=G
=H

=Zp

Note that hi 2H since hiH has order inG=H Š Zp that divides both p and the order
bi of hi . Hence, q1; : : : ; qk are not in the branch locus of C=H ! P1, which has then
to branch over at most r � 3 points with ramification indices p.

By Hurwitz formula (1.2), we get

(3.1) 2g.C=H/ � 2 D p

�
� 2C r

p � 1

p

�
H) g.C=H/ D

p � 1

2
.r � 2/:

Hence, r is forced to be equal to either 2 or 3. If r D 2, then C=H Š P1, and we can
assume without lost of generality that v3 is not in the branch locus, so in other words,
g3 2 H .

We want to determine the signature of a spherical system of generators that defines
C ! C=H Š P1. Each point of the fibre of qi via C=H ! P1 is contained in the
branch locus of C ! C=H and has ramification index bi since hi 2 H . Note that the
cardinality of the fibre is exactly p for these points qi . The same holds for v3 since g3
belongs to H .

Instead, the fibre of vi onC=H consists of only one point, i D 1; 2. The ramification
index of this point for C ! C=H equals the order of hgi i \H , which is ai=p. We
therefore obtain the signature Œa1=p; a2=p; ap3 ; b

p
1 ; : : : ; b

p

k
�.

The case r D 3 can be discussed by using the same argument.

Proposition 3.5. There are exactly five groupsG of order different from 1024 and less
than or equal to 2000 admitting an appropriate pair of spherical systems of generators
compatible with one of the triples of the secondary output of ListGroups.32; 4/:

t1 t2 G

2; 4; 6 23; 4 G.768; 1086051/

2; 4; 6 23; 4 G.768; 1086052/

2; 4; 6 2; 4; 20 G.960; 5719/

2; 4; 6 2; 4; 12 G.1152; 157849/

2; 4; 5 2; 4; 12 G.1920; 240996/

However, no one of these cases gives product-quotient surfaces isogenous to a product.
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Proof. We collect in a list those triples of the secondary output of ListGroups.32; 4/
having an order of the group different from 1024 and less than or equal to 2000. Then,
we run HowToExclude on this list and we obtain the above table.

However, we use ExistingSurfaces for each of the rows of the table to check that no
one gives a product-quotient surface isogenous to a product.

As a consequence of the previous statement, it remains to discuss only 65 of 152
cases skipped by ListGroups, which are those of Tables 2 and 3 below.

Remark 3.6. From (2.1), we get that groups G having group order and a pair of
spherical system of generators compatible with one of the rows of Tables 2 and 3 satisfy
the following:

(1) from no. 1 to no. 18 are perfect groups;

(2) from no. 19 to no. 54 are either perfect groups or Gab Š Z2;

(3) from no. 55 to no. 62 are either perfect groups or Gab Š Z3;

(4) either no. 63 is a perfect group or Gab is isomorphic to Z2 or to Z2 � Z2;

(5) either no. 64 is perfect or Gab is isomorphic to Z2 or to Z3 or to Z6;

(6) either no. 65 is perfect or Gab is isomorphic to one among Z2;Z2 � Z2, Z4,
Z4 � Z2.

Lemma 3.7. There are no perfect groupsG having group order and a pair of spherical
systems of generators of signatures compatible with one of the rows of Tables 2 and 3.

Proof. We use HowToExcludePG on the list of triples of Tables 2 and 3 to check that
there are no perfect groups having compatible algebraic data.

Proposition 3.8. There are no groups G having group order and a pair of spherical
systems of generators of signatures compatible with one of the rows of Tables 2 and 3
from no. 1 to no. 18.

Proof. This follows directly from Remark 3.6 and Lemma 3.7.

We consider now rows from no. 19 to no. 62 of Tables 2 and 3.

Remark 3.9. We need the following classical remarks of group theory:

(1) Let G be a finite group having a normal subgroup H of index a prime number
p � 2. If there is an element g 2 G, g … H , of order p, then

0! H ! G ! Zp ! 0

is a split exact sequence via the homomorphism section sending N1 2 Zp to g. In
other words, G D H Ì� Zp , where � is an automorphism of H of order p.
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(2) Let� WG!Z be a surjective group homomorphism. IfZ admits a normal subgroup
T of index k 2N, thenH WD ��1.T / is a normal subgroup ofG of index k. More
precisely, G=H Š Z=T .

No. t1 t2 jGj

1 2; 3; 8 2; 52 3840

2 2; 3; 7 4; 4; 4 2688

3 2; 3; 7 2; 3; 18 6048

4 2; 3; 7 2; 4; 8 5376

5 2; 3; 7 3; 3; 5 5040

6 2; 3; 7 2; 5; 6 5040

7 2; 3; 7 2; 8; 8 2688

8 2; 3; 7 3; 3; 15 2520

9 2; 3; 7 2; 3; 7 28224

10 2; 3; 7 2; 5; 30 2520

11 2; 3; 7 2; 3; 10 10080

12 2; 3; 7 2; 2; 2; 4 2688

13 2; 3; 7 2; 6; 15 2520

14 2; 3; 7 3; 5; 5 2520

15 2; 3; 7 2; 3; 30 5040

16 2; 4; 5 3; 3; 4 3840

17 2; 3; 9 2; 4; 5 5760

18 2; 3; 9 2; 5; 6 2160

19 2; 3; 12 2; 4; 6 2304

20 2; 3; 10 2; 4; 6 2880

21 2; 3; 8 2; 4; 12 2304

22 2; 3; 8 2; 5; 6 2880

23 2; 3; 22 2; 4; 5 2640

24 2; 3; 12 2; 4; 5 3840

25 2; 3; 14 2; 4; 6 2016

26 2; 3; 8 2; 4; 6 4608

27 2; 3; 18 2; 4; 5 2880

28 2; 3; 10 2; 4; 5 4800

29 2; 3; 54 2; 4; 5 2160

30 2; 4; 5 2; 4; 6 3840

31 2; 3; 30 2; 4; 5 2400

32 2; 4; 5 2; 4; 8 2560

33 2; 3; 8 2; 4; 5 7680

Table 2.

No. t1 t2 jGj

34 2; 3; 14 2; 4; 5 3360

35 2; 3; 8 2; 4; 8 3072

36 2; 3; 8 2; 6; 7 2016

37 2; 3; 10 2; 3; 10 3600

38 2; 3; 8 2; 3; 18 3456

39 2; 3; 8 2; 3; 54 2592

40 2; 4; 5 2; 5; 6 2400

41 2; 3; 8 2; 3; 22 3168

42 2; 3; 12 2; 3; 14 2016

43 2; 3; 8 2; 3; 30 2880

44 2; 3; 8 2; 2; 2; 3 2304

45 2; 3; 8 2; 6; 6 2304

46 2; 3; 8 3; 4; 4 2304

47 2; 3; 10 2; 3; 18 2160

48 2; 3; 10 2; 3; 14 2520

49 2; 3; 10 2; 3; 12 2880

50 2; 3; 8 2; 3; 14 4032

51 2; 3; 8 2; 3; 8 9216

52 2; 4; 5 2; 4; 5 6400

53 2; 3; 8 2; 3; 12 4608

54 2; 3; 8 2; 3; 10 5760

55 2; 3; 9 3; 3; 5 2160

56 2; 3; 9 2; 3; 12 3456

57 2; 3; 12 3; 3; 4 2304

58 2; 3; 9 2; 3; 18 2592

59 2; 3; 9 2; 3; 30 2160

60 2; 3; 9 2; 3; 9 5184

61 3; 3; 4 3; 3; 4 2304

62 2; 3; 9 3; 3; 4 3456

63 2; 4; 6 2; 4; 6 2304

64 2; 3; 12 2; 3; 12 2304

65 2; 4; 8 2; 4; 8 1024

Table 3.
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No. t1 t2 jG0j

19(a) 3; 3; 6 2; 2; 2; 3 1152

(b) 3; 3; 6 3; 4; 4 1152

(c) 3; 3; 6 2; 6; 6 1152

20(a) 3; 3; 5 2; 2; 2; 3 1440

(b) 3; 3; 5 3; 4; 4 1440

(c) 3; 3; 5 2; 6; 6 1440

21(a) 3; 3; 4 2; 2; 2; 6 1152

(b) 3; 3; 4 4; 4; 6 1152

(c) 3; 3; 4 2; 12; 12 1152

22 3; 3; 4 3; 5; 5 1440

23 3; 3; 11 2; 5; 5 1320

24 3; 3; 6 2; 5; 5 1920

25(a) 3; 3; 7 2; 2; 2; 3 1008

(b) 3; 3; 7 3; 4; 4 1008

(c) 3; 3; 7 2; 6; 6 1008

26(a) 3; 3; 4 2; 2; 2; 3 2304

(b) 3; 3; 4 3; 4; 4 2304

(c) 3; 3; 4 2; 6; 6 2304

27 3; 3; 9 2; 5; 5 1440

28 3; 3; 5 2; 5; 5 2400

29 3; 3; 27 2; 5; 5 1080

30(a) 2; 5; 5 2; 2; 2; 3 1920

(b) 2; 5; 5 3; 4; 4 1920

(c) 2; 5; 5 2; 6; 6 1920

31 3; 3; 15 2; 5; 5 1200

32(a) 2; 5; 5 2; 2; 2; 4 1280

(b) 2; 5; 5 4; 4; 4 1280

(c) 2; 5; 5 2; 8; 8 1280

33 3; 3; 4 2; 5; 5 3840

34 3; 3; 7 2; 5; 5 1680

Table 4.

No. t1 t2 jG0j

35(a) 3; 3; 4 2; 2; 2; 4 1536

(b) 3; 3; 4 4; 4; 4 1536

(c) 3; 3; 4 2; 8; 8 1536

36 3; 3; 4 3; 7; 7 1008

37 3; 3; 5 3; 3; 5 1800

38 3; 3; 4 3; 3; 9 1728

39 3; 3; 4 3; 3; 27 1296

40 2; 5; 5 3; 5; 5 1200

41 3; 3; 4 3; 3; 11 1584

42 3; 3; 6 3; 3; 7 1008

43 3; 3; 4 3; 3; 15 1440

44 3; 3; 4 2; 2; 3; 3 1152

45(a) 3; 3; 4 2; 2; 3; 3 1152

(b) 3; 3; 4 3; 6; 6 1152

46 3; 3; 4 2; 2; 3; 3 1152

47 3; 3; 5 3; 3; 9 1080

48 3; 3; 5 3; 3; 7 1260

49 3; 3; 5 3; 3; 6 1440

50 3; 3; 4 3; 3; 7 2016

51 3; 3; 4 3; 3; 4 4608

52 2; 5; 5 2; 5; 5 3200

53 3; 3; 4 3; 3; 6 2304

54 3; 3; 4 3; 3; 5 2880

55 2; 2; 2; 3 5; 5; 5 720

56 2; 2; 2; 3 2; 2; 2; 4 1152

57 2; 2; 2; 4 4; 4; 4 768

58 2; 2; 2; 3 2; 2; 2; 6 864

59 2; 2; 2; 3 2; 2; 2; 10 720

60 2; 2; 2; 3 2; 2; 2; 3 1728

61 4; 4; 4 4; 4; 4 768

62 2; 2; 2; 3 4; 4; 4 1152

Table 5.

Proposition 3.10. There are no groups G having group order and a pair of spherical
systems of generators defining a product-quotient surface isogenous to a product and
compatible with one of the triples from no. 19 to no. 62 of Tables 2 and 3.

Proof. From Remark 3.6 and Lemma 3.7, groups G from no. 19 to no. 62 of Tables 2
and 3 have a commutator subgroupG0 WD ŒG;G� of index equal to either 2 or 3. Hence,
we can apply Proposition 3.4 to H D G0 and say that G0 has group order and a pair of
spherical systems of generators compatible with one of the triples of Tables 4 and 5.
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Remark 3.11. Running HowToExcludePG on the list of Tables 4 and 5, we see that
there are no compatible perfect groups G0.

From (2.1), we see that triples of Tables 4 and 5 from no. 19 to no. 36 (with the
exception of no. 19(c), 20(c), 21(c), 25(c), 26(c)) together with no. 55 have G0 forced
to be a perfect group, which is a contradiction with Remark 3.11.

We run HowToExclude on no. 19(c), 20(c), 21(c), 25(c) to prove that there are no
groups compatible with those algebraic data.

Instead, we exclude 26(c) using the following.

Remark 3.12 ([8, Lem. 4.11]). There are no groups of order 768 having a spherical
system of generators of signature Œ4; 4; 4�.

Indeed, we would get G00 D ŒG0; G0� of 26(c) is a group of order 768 and from
Proposition 3.4 it should admit a spherical system of generators of signature Œ4; 4; 4�.

We have excluded all cases from no. 19 to no. 36 together with no. 55 of Tables 2
and 3.

We conclude by discussing no. 52 only, as all remaining cases in Table 3 can be
discarded using analogous arguments.

We recall Remark 3.11 and so we apply Proposition 3.4 to the commutatorG00 CG0,
which has then order 640 and admits a pair of spherical systems of generators both
with signature 25.

We run HowToExclude and then ExistingSurfaces to see that there are only four
groups G00.640; n/ having a pair of spherical systems of generators with signature 25

defining a product-quotient surface isogenous to product, wherenD 7665;8697;12278;
15814.

However, G00 has index 5 in G0, which admits a spherical system of generators
Œg1; g2; g3� of signature Œ2; 5; 5�. Then, g2 62 G00 and it has order 5. This means from
Remark 3.9 (1) that

0! G00 ! G0 ! Z5 ! 0

is a splitting exact sequence, so G0 D G00 Ì� Z5 through an automorphism � of G00 of
order 5. We easily check that each of the obtained groupsG00.640;n/ admits exactly four
automorphisms of order 5. However, for each of these automorphisms � the semidirect
product G00.640; n/ Ì� Z5 has abelianization Z42 � Z5, so no one of these groups can
be G0 of no. 52 in Table 5, which has abelianization Z5.

This then excludes groups G of no. 52 of Table 3.

Finally, we are left to consider rows no. 63, 64, 65 of Table 3.

Remark 3.13. Using similar arguments as in the proof of Proposition 3.10, groups G
of the rows no. 63, 64, 65 do not yield surfaces isogenous to a product, and so these
cases can be discarded.
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3.2. Rational .�1/-curves on product-quotient surfaces

In this short subsection, we investigate which surfaces among those obtained in
Theorem 0.3 do not contain .�1/-curves, namely smooth rational curves with self-
intersection �1. First of all, we observe the following.

Remark 3.14. All surfaces S obtained in Theorem 0.3 are surfaces of general type.
Indeed, from Enriques–Kodaira classification of complex algebraic surfaces, if q.S/
is zero, then either S is rational, or S is of general type, or K2S � 0. Therefore, since
surfaces of Theorem 0.3 have K2S � 23, q.S/ D 0, and pg.S/ D 3 ¤ 0, then they are
of general type.

Proposition 3.15 ([5, Lem. 6.9]). Let S be a product-quotient surface of general type
of quotient model X . Assume that the exceptional locus of the minimal resolution of
singularities �WS ! X consists of

(i) curves of self-intersection .�3/ and .�2/, or

(ii) at most two smooth rational curves of self-intersection .�3/ or .�4/, and .�2/-
curves.

Then, S is minimal, so it does not contain .�1/-curves.

Corollary 3.16. Let S be a product-quotient surface belonging to one of the families
of Tables 9 to 20 of Theorem 0.3. Then, S is a minimal surface.

Proof. For each case of Tables 9 to 20 (with the exception of no. 186 to 196), the
exceptional curves arising from the basket of singularities of the quotient model X are
either of type (i) or (ii) of Proposition 3.15, so that S is minimal.

Regarding the remaining cases no. 186 to 196, their basket of singularities is always
equal to ¹1=5; 4=5º, so the minimality follows directly by [4, Prop. 4.7 (3)].

4. The degree of the canonical map of product-quotient surfaces

In this section, we investigate the degree of the canonical map of product-quotient
surfaces, with a particular focus on those having geometric genus three.

We briefly explain the strategy and the content of each subsection but first we give
the following.

Remark 4.1. The degree of the canonical map of product-quotient surfaces is bounded
from above by 32. Indeed, product-quotient surfaces satisfy the inequalityK2S � 8�.OS/,
see Theorem 2.4, and so replacing Bogomolov–Miyaoka–Yau inequality with K2S �
8�.OS / in the proof of [9, Prop. 4.1], we get

deg.ˆS / �
8�.OS /

�.OS / � 3
� 32:
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Let us consider a product-quotient surface S given by a pair of curves C1 and C2
and a finite group G acting (faithfully) on both of them.

The diagonal action of G on the product C1 � C2 induces a representation of G on
the spaces of 2-forms of C1 � C2. Let us denote by jKC1�C2 jG the linear subsystem
of the canonical linear system of C1 � C2 given by the subspace H 2;0.C1 � C2/

G of
the G-invariant 2-forms.

In Section 4.4, we show the relationship between the degree of the canonical map
of S and the (schematic) base locus of the moving part of jKC1�C2 jG . Indeed, it holds
that

(4.1) deg.ˆS / D
1

jGj � deg.†/
� yM 2;

where † is the image of the canonical map of S , and yM is the base-point free linear
system obtained blowing-up the base locus of the moving part of jKC1�C2 jG .

Note that whenever pg.S/D 3, then the image of the canonical map is P2, a surface
of degree 1, and so the knowledge of the base locus of jKC1�C2 jG is enough to compute
deg.ˆS / by using Formula (4.1).

The strategy to investigate the base locus of jKC1�C2 jG is the following. The action
of G induces a representation on the space of 1-forms H 1;0.Ci / via pullback, called
in the literature canonical representation. By the standard representation theory, the
space of 1-forms splits as a direct sum of isotypic components H 1;0.Ci /

�, � 2 Irr.G/
irreducible character of G. The irreducible characters � occurring in the character
�can of the canonical representation are explicitly computable by the Chevalley–Weil
formula, see [19, Thm. 2.8].

As a consequence of this, the space of invariant 2-forms H 2;0.C1 � C2/
G splits as

a direct sum of invariant subspaces�
H 1;0.C1/

�
˝H 1;0.C2/

x�
�G
; � 2 Irr.G/:

Therefore, the base locus of jKC1�C2 jG is simply the intersection of the base loci of
such invariant subspaces and then a computation of them solves the problem.

Let us consider the natural inclusion

(4.2)
�
H 1;0.C1/

�
˝H 1;0.C2/

x�
�G
� H 1;0.C1/

�
˝H 1;0.C2/

x�:

Theorem 4.20 determines the base locus of the linear subsystem of the bigger subspace
H 1;0.C1/

� ˝H 1;0.C2/
x�, which is discovered to be pure in codimension 1 and union

of fibres (with multiplicities) for the natural projections C1 � C2 ! Ci , i D 1; 2.
The formula to compute explicitly these fibres and their multiplicities is given

through Theorem 4.10 which provides the base locus of the subsystem of the canonical
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system of a Riemann surface C given by an isotypic component H 1;0.C /� of the
action of a finite group G on C .

Note that whenever � is of degree one, then (4.2) is an equality. This motivates the
following.

Property (#) A product-quotient surface S satisfies Property (#) if

dim
�
H 1;0.C1/

�
˝H 1;0.C2/

x�
�G
¤ 0 H) deg.�/ D 1

for each � 2 Irr.G/.

If S satisfies Property (#), then jKC1�C2 jG is spanned by pg divisors which decompose
as a union of fibres for the natural projections C1 �C2! Ci , i D 1; 2. Since two fibres
either do not intersect or they intersect transversally at one point, this makes the base
locus of jKC1�C2 jG explicit.

Remark 4.2. Observe that Property (#) always holds for G abelian group, and it is
possibly satisfied for other non-abelian groups, since we are only interested in those
characters of G for which the left-hand side of (4.2) is not zero.

Remark 4.3. In terms of the representation theory, Property (#) translates as

h�1can; �i ¤ 0 and h�2can; x�i ¤ 0 H) deg.�/ D 1

for each irreducible character �, where �ican is the character of the canonical represen-
tation of Ci , i D 1; 2.

Thus, once�1can and�2can are determined using the Chevalley–Weil formula, verifying
whether Property (#) holds reduces to a simple numerical computation.

In Section 4.3, we explain how to compute the self-intersection of the mobile part
M of jKC1�C2 jG under the assumption that Property (#) holds.

Note that the difference M 2 � yM 2 is the sum of the correction terms arising from
each isolated base-point of M .

To finish the computation of the degree, whenever pg.S/ D 3, we use iteratively
for each base point ofM the Correction Term formula (Theorem 4.25), which provides
the correction term of each base point to the difference M 2 � yM 2. Such formula is a
generalization of the formula presented in [20] and it seems of independent interest, so
that it is presented in a more general setting.

Once we have determined bothM 2 andM 2 � yM 2, then the degree of the canonical
map of S is obtained by rearranging formula (4.1) as follows:

deg.ˆS / D
1

jGj
�
�
M 2
� .M 2

� yM 2/
�
:
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4.1. Base locus of isotypic components of canonical representations of actions on curves

Let C be a Riemann surface, G < Aut.C / a finite group, C 0 WD C=G its quotient, and
�WC ! C 0 the quotient map.
G acts on H 1;0.C / via the canonical representation:

.g � !/p WD .dg
�1/�p!g�1�p:

Let us denote by �can the character of the canonical representation, which takes the
name of canonical character. The canonical representation can be split as a direct sum
of irreducible representations:

H 1;0.C / D
M

�2Irr.G/

H 1;0.C /�:

Here, H 1;0.C /� is the isotypic component of H 1;0.C / of character �. In terms of
characters, the above splitting translates as

�can D
X

�2Irr.G/

h�can; �i � �:

We shall use the algorithm developed in [19] and implemented in the computational
algebra system MAGMA to compute the canonical character�can of any Galois branched
covering.

The aim of this section is to investigate the base locus of the associated subsystem
jKC j

� given by the isotypic component H 1;0.C /�. Let us give first some preliminary
results.

Notation. Given a point q 2 C 0, the divisor ��1.q/ is considered with the reduced
structure.

Lemma 4.4. Consider a G-invariant subspace W � H 1;0.C /. For any p 2 ��1.q/,
q 2 C 0, let tp WD min!2W ord.!/ be the minimal order of a 1-form in W at p. Then,
all tp are equal to the same number, denoted by tq . Therefore, the base locus of jW j is
a union of orbits

Bs
�
jW j

�
D

X
q

tq�
�1.q/:

Furthermore, there exists a general form!2W with order exactly tq at eachp2��1.q/.

Proof. For every point p 2 ��1.q/, there exists a 1-form !p 2W with order tp at p,
by the definition of tp . Given g 2 G, then g � !p belongs to the invariant subspace W
too, and it vanishes at g � p with multiplicity tp, so that tg �p � tp. Hence, all tp are
equal to the same number, denoted as tq .
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We observe that a generic linear combination! of the j��1.q/j 1-forms!p obtained
in this way has order tq at each point of ��1.q/.

Remark 4.5. Let ! 2 W be a 1-form of Lemma 4.4, with order tq at each point
p 2 ��1.q/. Given g 2 G, then g � ! 2 W is a 1-form with order tq at each point
p 2 ��1.q/.

Lemma 4.6. Let f 2 M.C=G/ D M.C /G be a non-zero invariant meromorphic
function. Denote by H 1;0.C /

�

f
the subspace of H 1;0.C /� consisting of forms ! such

that f! is a holomorphic form. Then,

(4.3) f WH 1;0.C /
�

f
! f �H 1;0.C /

�

f
� H 1;0.C /; ! 7! f!

is aG-equivariant isomorphism. In particular, f �H 1;0.C /
�

f
is aG-invariant subspace

of H 1;0.C /�.

Proof. H 1;0.C /
�

f
is G-invariant: given g 2 G and ! 2 H 1;0.C /

�

f
, then f .g � !/ D

g � .f!/ is holomorphic since f is G-invariant, and f! is holomorphic. This shows
immediately that the map of (4.3) is G-equivariant. From the Schur lemma, then the
image of (4.3) is contained inH 1;0.C /�. However, f is not the zero function, so (4.3)
is injective.

Definition 4.7. Let X be a Riemann surface and q 2 X . Let us define

kq WD min
®
m 2 N W h0.X;mq/ � 2

¯
as the minimal non-gap of q. kq is therefore the smallest number such that X admits a
non-constant meromorphic function f with only one pole at q, of order kq .

Remark 4.8. From the Riemann–Roch theorem, we have

h0
�
X; .g.X/C 1/q

�
D h0

�
X;K �

�
g.X/C 1

�
q
�
C 2 � 2:

Therefore,
kq � g.X/C 1:

In other words, kq is the minimum of the complement of the set of the Weierstrass
gaps for q. In particular, kq D g.X/C 1 if q is not a Weierstrass point; otherwise,
kq < g.X/C 1.

Lemma 4.4 applies to H 1;0.C /�, so the base locus of jKC j� is

Bs
�
jKC j

�
�
D

X
q

t�q �
�1.q/;

for some positive integers t�q , which we still need to determine.
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We denote by �� an irreducible representation of G of character �.
We have the following lemma.

Lemma 4.9. Let us fix a point q 2 C=G of ramification index mq . Let h be the local
monodromy of a point p 2 ��1.q/; hence, o.h/ D mq . There exists

a�q 2
®
j 2 Œ0; : : : ; mq � 1�W e

2�i
mq

j
2 Spectrum

�
��.h/

�¯
and a non-negative integer 0 � k�q < kq � g.C=G/C 1 such that

t�q D mq � a
�
q � 1C k

�
qmq;

where kq is the minimal non-gap of q.
The values a�q and k�q depend only on q and � and not on the choice of p 2 ��1.q/.

Proof. We observe that the action ofh onH 1;0.C /� is diagonalizable, and its spectrum
is contained in the set of the mq-roots of the unity. Hence, the action of h decomposes
H 1;0.C /� as

H 1;0.C /� D

mq�1M
jD0

Vj ;

where Vj is the eigenspace of eigenvalue �j , and � is the first mq-root of the unity (Vj
may be zero, whenever �j is not an eigenvalue of h).

Let !j 2 Vj be an eigenvector. We determine the order of !j at the point p. By
definition of local monodromy, there exists a local coordinate z such that the action
of h in a neighborhood of p is z 7! �z. We write !j D f .z/dz locally around this
neighborhood of p. We get

�jf .z/dz D h �
�
f .z/dz

�
D .h�1/�

�
f .z/dz

�
D f .�mq�1z/�mq�1dz:

Hence, f satisfies f .�mq�1z/D�jC1f .z/, forcing it to be f .z/Dzmq�j�1g.zmq/, for
some holomorphic function g. Hence, ordp.!j/ is congruent tomq�j �1modulomq .

Applying Lemma 4.4 toW DH 1;0.C /�, we find a form ! 2H 1;0.C /� with order
t
�
q at each point of ��1.q/. Let us write ! as a ! D

Pmq�1

jD0 !j , with !j 2 Vj . Since
each !j has different order at p, then

t�q D ordp.!/ D min
!j¤0

®
ordp.!j /

¯
:

In other words, there exists j0 2 Œ0; : : : ; mq � 1� such that t�q D ordp.!j0/.
Since !j0 is an eigenvector of eigenvalue �j0 , then t�q D ordp.!j0/ is congruent to

mq � j0 � 1modulomq; let us say t�q Dmq � j0 � 1C kj0mq , for some non-negative
integer kj0 .
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We claim that kj0 <kq , kq being the minimal non-gap of q 2C=G. By contradiction,
if kj0 � kq , then we use the definition of kq to pick up a meromorphic function
f 2M.C=G/ DM.C /G with only one pole at q of order ordq.f / D �kq . In this
case, then f! is a holomorphic form. Indeed, by definition of f , the only poles of f!
that may occur lie on ��1.q/, but the order of f! at each g � p 2 ��1.q/ is

ordg �p.f!/ D ordg �p.!/C ordg �p.f / D t�q � kqmq
D mq � j0 � 1C .kj0 � kq/mq � 0:

Furthermore, from Lemma 4.6, then f! 2 H 1;0.C /�. However, this would contradict
the definition of t�q since ordp.f!/ D t�q � kqmq < t

�
q .

To summarize, we have proved

t�q D mq � j0 � 1C kj0mq;

where j0 is one of the integers such that �j0 2 Spectrum.��.h//, and kj0 < kq .
It is straightforward to see that such integers j0 and kj0 do not depend on the choice

of p 2 ��1.q/.

Theorem 4.10 (Base locus formula). The base locus of jKC j� is

Bs
�
jKC j

�
�
D

X
q

.mq � a
�
q � 1C k

�
qmq/�

�1.q/;

where the non-negative integers a�q and k�q are those defined in Lemma 4.9.

Proof. It suffices to apply Lemma 4.9 to each point q 2 C=G.

Remark 4.11. Under suitable assumptions, it is possible to determine exactly a�q
and k�q .

For instance, if C=G Š P1, then kq D g.C=G/C 1 D 1, for any q 2 P1. Hence,
k
�
q D 0, and we get

t�q D mq � a
�
q � 1:

Moreover, if one of the following holds:
• � is an irreducible character of degree 1, or
• the local monodromy h is in the center of G,

then ��.h/ D �.h/
�.1/
� Id is a multiple of the identity.

This is obvious when the character has degree one. Instead, when the local mon-
odromy is central, this is a result we take from [14].

Under one of these two conditions, then a�q 2 Œ0; : : : ; mq � 1� is the only integer
such that �.h/ D e

2�i
mq

a
�
q�.1/.
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We deduce then the following immediate consequence from Theorem 4.10 and
Remark 4.11.

Corollary 4.12. Assume C=G Š P1, and � is an irreducible character of degree 1.
Then,

Bs
�
jKC j

�
�
D

X
q

.mq � a
�
q � 1/�

�1.q/;

where a�q 2 Œ0; : : : ; mq � 1� is the only non-negative integer such that �.h/ D e
2�i
mq

a
�
q ,

with h local monodromy of a point p over q.

4.2. The canonical system of a product-quotient surface

Let us consider a product-quotient surface S given by a pair of curves C1 and C2 and
a finite group G acting (faithfully) on both of them. Let X WD .C1 � C2/=G be the
quotient model of S .

According to the previous section, then G induces the canonical representation on
H 1;0.Ci /; let �ican be their canonical characters, respectively, i D 1; 2.

Theorem 4.13. Every G-invariant global holomorphic 2-form of C1 � C2 extends
uniquely to a global holomorphic 2-form on the minimal resolution of the singularities
�WS ! X of X . It holds that

(4.4) H 2;0.S/ D H 2;0.C1 � C2/
G
D

M
�2Irr.G/

�
H 1;0.C1/

�
˝H 1;0.C2/

x�
�G
:

Furthermore,
pg.S/ D

X
�2Irr.G/

h�1can; �i � h�
2
can; x�i:

Proof. Denote byXı the smooth locus ofX , i.e. the codimension 2 locus consisting of
the image of those points of C1 � C2 with a trivial stabilizer. Each global holomorphic
2-form of Xı extends uniquely to a global holomorphic 2-form of C1 � C2, via the
pullback map ��12WH

2;0.Xı/! H 2;0.C1 � C2/, resulting in a monomorphism onto
the invariant subspace H 2;0.C1 � C2/

G . On the other hand, the minimal resolution
of the singularities �WS ! X is an isomorphism on Xı; hence, .��1/�WH 2;0.S/!

H 2;0.Xı/ is a monomorphism. Furthermore, each global holomorphic 2-form on the
smooth locus Xı of X extends uniquely to a global holomorphic 2-form on S , by
Freitag’s theorem [21, Satz 1], so .��1/� is an epimorphism too.

Thus H 2;0.S/ is sent isomorphically via ��12 ı .�
�1/� onto the invariant subspace

H 2;0.C1 �C2/
G �H 2;0.C1 �C2/. Finally, by applying Künneth formula and writing

H 1;0.Ci / as the direct sum of isotypic components, we get

H 2;0.C1 � C2/
G
D

M
�;�2Irr.G/

�
H 1;0.C1/

�
˝H 1;0.C2/

�
�G
:
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Formula (4.4) follows just from the Schur lemma. Indeed, the dimension of any piece
of the sum is h�1can; �i � h�

2
can; �i � h��; 1i. However, h��; 1i D h�; x�i, which is equal

to 1 only for � D x�, and 0 otherwise.

Remark 4.14. Using an analogous proof such as that of Theorem 4.13, one can say in
general that

H i;0.S/ D H i;0.C1 � C2/
G

by Freitag’s theorem [21, Satz 1]. Hence, another immediate consequence firstly
observed by Serrano in [33, Prop. 2.2] is a formula for the irregularity of S :

q.S/ D g.C1=G/C g.C2=G/:

In particular, S is regular if and only if Ci=G Š P1.

Let us recall the following classical lemma of representation theory.

Lemma 4.15. Let us consider an irreducible representation ��WG ! GL.V / afforded
by a character �, of degree n WD �.1/. Consider a basis v1; : : : ; vn of V and its dual
basis e1; : : : ; en of V �. Then, .V ˝ V �/G is one-dimensional and it is generated by
v1 ˝ e1 C � � � C vn ˝ en.

We use the previous lemma to describe a basis of .H 1;0.C1/
� ˝H 1;0.C2/

x�/G .

Remark 4.16. Let us consider an irreducible representation ��WG ! GL.V / of
character �. Let n WD �.1/ be the degree of ��. Then,H 1;0.C1/

� ˝H 1;0.C2/
x� is the

direct sum of a certain number of copies of V ˝ V � (the exact number of copies is
h�1can;�i � h�

2
can; x�i). Consequently, its invariant subspace .H 1;0.C1/

�˝H 1;0.C2/
x�/G

is a direct sum of the same number of copies of the invariant subspace .V ˝ V �/G .
Let us fix a basis ¹!1; : : : ; !nº of V and the (dual) basis ¹�1; : : : ; �nº on V �. We
denote by ¹!k1 ; : : : ; !

k
n º the corresponding basis of the k-th copy of V in H 1;0.C1/

�,
k D 1; : : : ; h�1can;�i, and by ¹�l1; : : : ; �

l
nº the corresponding basis of the l-th copy of V �

in H 1;0.C2/
x�, l D 1; : : : ; h�2can; x�i. Lemma 4.15 applies for any copy of .V ˝ V �/G ,

so that

(4.5)
�
H 1;0.C1/

�
˝H 1;0.C2/

x�
�G
D

M
k;l

h!k1 ˝ �
l
1 C � � � C !

k
n ˝ �

l
ni:

Definition 4.17. We denote by jKC1�C2 jG the linear subsystem of the canonical
system of C1 � C2 given by the subspace of invariant 2-forms of C1 � C2.

We give a theoretical description of the canonical map ˆKS of S . From Theo-
rem 4.13, the (rational) mapˆKS ı �12 is induced by the linear subsystem jKC1�C2 jG .
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The situation is the following:

X

C1 � C2 S Ppg�1

Pg1�1 � Pg2�1 Pg1g2�1:Segre

�12

�12 �

ˆKC1�C2

ˆKS

proj
ˆ
jKC1�C2

jG

Let us fix a basis of H 1;0.C1/ and H 1;0.C2/. Then, ˆKS ı �12 is the composition of
the product of the canonical maps of C1 and C2 with the Segre embedding in Pg1g2�1,
together with the projection map proj. This latter map sends a basis of 2-forms of
C1 � C2 to a basis of invariant 2-forms defining ˆKS .

We can use Remark 4.16 to give an explicit description of proj, which is defined in
coordinates as follows.

Let us fix coordinates �xklij on Pg1g2�1, with 1� i; j � �.1/, and 1� k � h�1can;�i,
1 � l � h�2can; x�i. Then,

proj
��
�xklij W �; i; j; k; l

��
D
�
�xkl11 C � � � C

�xklnn W � 2 Irr.G/; n D �.1/; k; l
�
:

4.3. Base locus of the invariant subsystem jKC1�C2 jG

Given an irreducible character �2 Irr.G/, we have the following series of inclusions:�
H 1;0.C1/

�
˝H 1;0.C2/

x�
�G
� H 1;0.C1/

�
˝H 1;0.C2/

x�
� H 2;0.C1 � C2/:

Let us define the associated subsystems of jKC1�C2 j given by these subspaces.

Definition 4.18. We denote by jKC1 j� ˝ jKC2 jx� and by .jKC1 j� ˝ jKC2 jx�/G the
associated subsystems of the canonical linear system ofC1 �C2 given byH 1;0.C1/

�˝

H 1;0.C2/
x� and .H 1;0.C1/

� ˝H 1;0.C2/
x�/G , respectively.

Theorem 4.13 permits us to describe the base locus of jKC1�C2 jG in terms of the
base locus of its pieces .jKC1 j� ˝ jKC2 jx�/G , � 2 Irr.G/. More precisely, we have

(4.6) Bs
�
jKC1�C2 j

G
�
D

\
h�1can;�i¤0; h�

2
can;x�i¤0

Bs
��
jKC1 j

�
˝ jKC2 j

x�
�G�

:

Notation. We denote �WX ! C1=G � C2=G, and �i WCi ! Ci=G, i D 1; 2. Further-
more, let us denote

Bvert
q WD ¹qº � C2=G; and Bhor

l WD C1=G � ¹lº;
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where q 2 C1=G and l 2 C2=G. Similarly, Rvert
q and Rhor

l
refer to the reduced inverse

images on C1 � C2 of Bvert
q and Bhor

l
:

Rvert
q WD

1

mq
.� ı �12/

�
�
¹qº � C2=G

�
; Rhor

l WD
1

ml
.� ı �12/

�
�
C1=G � ¹lº

�
:

Remark 4.19. With this notation, then the branch locus of � ı �12W C1 � C2 !
C1=G � C2=G is the grid given by the union of Bvert

q and Bhor
l

with q 2 Crit.�1/ and
l 2 Crit.�2/.

Base Locus formula theorem 4.10 provides a formula for the base locus of jKC1 j�˝
jKC2 j

x�.

Theorem 4.20. The (schematic) base locus of the linear subsystem jKC1 j� ˝ jKC2 jx�

of jKC1�C2 j is pure in codimension 1 and is equal to

(4.7) Bs
�
jKC1 j

�
˝ jKC2 j

x�
�
D

X
q2Crit.�1/

t�qR
vert
q C

X
l2Crit.�2/

t
x�

l
Rhor
l ;

where t�q and t x�
l

are the non-negative integers of Lemma 4.9.

Corollary 4.21. Let � be a character of degree 1. Then,�
H 1;0.C1/

�
˝H 1;0.C2/

x�
�G
D H 1;0.C1/

�
˝H 1;0.C2/

x�

and the base locus of its associated linear subsystem�
jKC1 j

�
˝ jKC2 j

x�
�G
D jKC1 j

�
˝ jKC2 j

x�

is given by the formula (4.7) of Theorem 4.20.
Assume furthermore that Ci=G Š P1, for i D 1; 2. Then, t�q and t x�

l
of (4.7) are the

unique non-negative integers with 0 � t�q � mq � 1 and 0 � t x�
l
� ml � 1 satisfying

�.h/ D e
2�i
mq

.mq�t
�
q �1/ and �.g/ D e

2�i
ml

.t
x�

l
C1/
;

where h is the local monodromy of a point over q, and g is the local monodromy of a
point over l .

Proof. The first claim is straightforward since every v˝w2H 1;0.C1/
�˝H 1;0.C2/

x�

is G-invariant

g � .v ˝ w/ D
�
�.g/v

�
˝
�
x�.g/w

�
D
ˇ̌
�.g/

ˇ̌2
v ˝ w D v ˝ w:

The rest of the thesis follows from Remark 4.11 and from the fact that since t x�
l

is the
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unique non-negative integer such that

x�.g/ D e
2�i
ml

.ml�t
x�

l
�1/
;

then it is the unique non-negative integer such that �.g/ D e
2�i
ml

.t
x�

l
C1/.

Lemma 4.22. Suppose S satisfies Property (#). Then, the fixed part of the linear system
jKC1�C2 j

G is

Fix
�
jKC1�C2 j

G
�
D

X
q2Crit.�1/

�
min

�Wh�1can;�i¤0;h�
2
can;x�i¤0

t�q

�
Rvert
q

C

X
l2Crit.�2/

�
min

�Wh�1can;�i¤0;h�
2
can;x�i¤0

t
x�

l

�
Rhor
l :

(4.8)

Proof. The fixed part of jKC1�C2 jG is the common divisor of the fixed parts of
those pieces .jKC1 j� ˝ jKC2 jx�/G that are non-empty, for � irreducible character. By
Property (#), then � is of degree 1; hence, Corollary 4.21 applies and the fixed part of
.jKC1 j

� ˝ jKC2 j
x�/G amounts toX

q2Crit.�1/

t�qR
vert
q C

X
l2Crit.�2/

t
x�

l
Rhor
l :

The common divisor of these fixed parts is the right-hand side of (4.8).

Let jM j be the moving part of jKC1�C2 jG . By the definition of M , then

M � KC1�C2 � Fix
�
jKC1�C2 j

G
�
:

Suppose S satisfies Property (#). Thus, Fix.jKC1�C2 jG/ is a union of fibres by equation
(4.8). To compute M 2 is then sufficient to know the intersection product of

KC1�C2 �R
vert
q ; KC1�C2 �R

hor
l ; .Rvert

q /2; .Rhor
l /

2; Rvert
q �R

hor
l :

We compute them.
Rvert
q can be written as the sum of jGj=mq components ¹g � pº�C2, with p point

over q, and g 2 G. ¹g � pº � C2 has self-intersection zero (since two points are always
homologous on a connected variety, and then the fibres of C1 � C2 ! C1 are always
numerically equivalent). Thus, we can use the genus formula to get

KC1�C2 �
�
¹g � pº � C2

�
D 2g.C2/ � 2 �

�
¹g � pº � C2

�2
D 2g.C2/ � 2:

The same reasoning works for a horizontal divisor Rhor
l

. Thus, we have

KC1�C2 �R
vert
q D

jGj

mq

�
2g.C2/ � 2

�
; KC1�C2 �R

hor
l D

jGj

ml

�
2g.C1/ � 2

�
:
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Analogously,

.Rvert
q /2 D .Rhor

l /
2
D 0; and Rvert

q �R
hor
l D

jGj2

mqml
:

4.4. A formula for the degree of the canonical map

In the previous subsection, we have seen that the rational mapˆKS ı �12 is induced by
the linear subsystem jKC1�C2 jG , which is generated by pg invariant 2-forms defining
ˆKS :

C1 � C2 S Ppg�1:
�12 ˆKS

ˆ
jKC1�C2

jG

We resolve the indeterminacy of ˆjKC1�C2 jG D ˆKS ı �12 by a sequence of blowups:

3C1 � C2 //

ˆ yM %%

C1 � C2

ˆ
jKC1�C2

jG

��

Ppg�1:

Lemma 4.23. The mapˆKS is not composed with a pencil if and only if yM 2 is positive.

Proof. The map ˆKS is composed with a pencil if and only if ˆ yM is composed with
a pencil. The image † of ˆ yM is a curve if and only if we are able to pick up two
general hyperplanesH1 andH2 of Ppg�1 such thatH 2

j†
DH1 �H2 �†D 0. However,

yM D ˆ�
yM
.H/; hence, H 2

j†
is zero if and only if yM 2 is equal to zero.

Let us suppose yM 2 > 0, so that ˆKS has image † of dimension 2. In this case,
then ˆ yM is a finite morphism, and by projection formula,

yM 2
D deg.ˆ yM / deg.†/ D deg.ˆKS / deg.†/jGj;

which gives formula (4.1).

4.5. The correction term to the self-intersection of a 2-dimensional linear system with only
isolated base points

As remarked in the introduction of this section,M 2 � yM 2 is the sum of the correction
terms arising from each isolated base-point ofM , the mobile part of the linear subsystem
jKC1�C2 j

G .
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The contribution to the correction term of any isolated base-point may be easily
computed whenever S satisfies Property (#).

Let us fix a base-point .p1; p2/ 2 C1 � C2 of the mobile part M . The point p1 is
over q 2 C1=G and p2 is over l 2 C2=G. Let us fix an irreducible character �. We
can always choose a basis of H 1;0.C1/

� such that each 1-form of the basis has the
minimum order t�q at p1, which is the positive integer computed in Lemma 4.9.

Similarly, we can choose a basis of H 1;0.C2/
x� such that each 1-form of the basis

has minimum order t x�
l

at p2. The choice of this pair of bases gives via tensor product
a natural basis of H 1;0.C1/

� ˝H 1;0.C2/
x�, which is a G-invariant subspace since

Property (#) holds; namely, � is of degree one. This permits us to conclude that the
divisors spanning the linear subsystem jKC1�C2 jG can be written in a neighborhood
of .p1; p2/ as

t�qR
vert
q C t

x�

l
Rhor
l ; � such that h�1can; �i ¤ 0; h�

2
can; x�i ¤ 0:

Finally, it is sufficient to remove the fixed part of jKC1�C2 jG computed in Lemma 4.22
to get how the divisors spanning M are written in a neighborhood of .p1; p2/. So, the
linear system M is spanned by pg.S/ divisors locally near .p1; p2/ of the form

a1R
vert
q C b1R

hor
l ; : : : ; apgR

vert
q C bpgR

hor
l :

Since we assumed that .p1; p2/ is a base-point and M has no fixed components, then
without loss of generality, a1 D b2 D 0.

Note that Rvert
q and Rhor

l
are smooth and intersect transversally at .p1; p2/.

We provide a formula to directly compute the contribution of .p1; p2/ to the
correction term M 2 � yM 2 whenever pg.S/ is equal to three. This formula, presented
in a slightly more general setting, is a stronger version of [18, Lem. 2]. We recall the
following definition.

Definition 4.24. Let M be a (not necessarily complete) linear system on a surface S .
The strict transform yM of M at p is defined as follows. We blow up the basepoint p,
take the pullback of the moving part ofM , and remove the fixed part of this new linear
system. If an infinitely near point of p is a base-point for this linear system, then repeat
the procedure until we obtain a (not necessarily complete) linear system yM such that
no infinitely near point of p is a base point of yM .

Theorem 4.25 (Correction term formula). Let M be a two-dimensional linear system
on a surface S spanned by D1, D2, and D3. Assume that M has only isolated base-
points, smooth for S , and that in a neighborhood of a basepoint p, we can write the
divisors Di as

D1 D aH; D2 D bK; and D3 D cH C dK:
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Here,H andK are reduced, smooth, and intersecting transversally at p and a; b; c; d
are non-negative integers, b � a. Let yM be the strict transform of M at p. Then,

M 2
� yM 2

D min¹ab; ad C bcº:

Proof. The proof follows from Lemmas 4.26 and 4.27 below.

Lemma 4.26. Assume that bc C ad � ab. Then, M 2 � yM 2 D ab.

Proof. We prove the lemma by induction on .a; b/, with b�a. Here, we are consider-
ing the lexicographic order� defined on the lower half plane�� WD ¹.a; b/Wa � bº �
N �N as follows:

.a0; b0/ � .a; b/ if and only if a0 < a or a0 D a and b0 � b:

In this case, �� admits the well-ordering principle and so it holds the mathematical
induction.

Suppose that .a; b/D 0. Then,M is base-point-free and so yM 2 DM 2 DM 2 � ab.
Now suppose that the statement is true for .a0; b0/ < .a; b/. We aim to prove it for
.a; b/. We blow up the base-point p, take the pullback of the divisors Di , and remove
the fixed part, which is the exceptional divisor bE of the blowup. In fact, the pullback
of D3 contains c C d times E and c C d � b, thanks to b � a and to the assumption
bc C ad � ab:

a.c C d/ � bc C ad � ab; so c C d � b:

Restricted to the preimage of our neighborhood of p, these divisors are

a yH C .a � b/E; b yK; and c yH C d yK C .c C d � b/E:

Here, yH and yK are the strict transforms of H and K. Let yM be the linear system
generated by these three divisors, and then yM 2 DM 2 � b2. If a D b or b D 0, then
yM is base-point-free and we are done. Otherwise, on the preimage, the linear system
yM has precisely one new base-point: the intersection point of yK and E. Locally near

this point the three divisors spanning yM are

.a � b/E; b OK; and d OK C .c C d � b/E:

We need to distinguish two cases, when .a � b/ < b or when .a � b/ � b. In
the first case .a � b/ < b, we get .b; a � b/ < .a; b/. We define new coefficients
a0 WD b, b0 WD a � b, c0 WD d , and d 0 WD c C d � b. Otherwise, if .a � b/ � b, then
.a � b; b/ < .a; b/, and we define a0 WD a � b, b0 WD b, c0 WD c C d � b, and d 0 WD d .
For both cases, the new coefficients fulfill the inductive hypothesis.

Thanks to bc C ad � ab, we have

b0c0Ca0d 0D .a � b/dCb.cCd � b/DadCbc � b2�ab � b2D .a � b/bDa0b0:
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By induction, the self-intersection of the new linear system yM is equal to

yM 2
D .M 2

� b2/ � b.a � b/ DM 2
� ab:

Lemma 4.27. Assume that bc C ad � ab. Then, M 2 � yM 2 D ad C bc.

Proof. We prove the lemma by induction, once more on .a; b/, with b � a. Thus, we
consider the lexicographic order� on��, as we have done in the proof of Lemma 4.26.

Suppose that .a; b/ D 0. Then, M is base-point-free and so

yM DM 2
DM 2

� .0d C 0c/:

Now suppose that the statement is true for .a0; b0/ < .a; b/. Our aim is to prove it for
.a; b/. We blow up the base-point p, take the pullback of the divisors Di , and remove
the fixed part, which is the exceptional divisor .c C d/E of the blowup, if c C d � b,
or the divisor bE, otherwise. Hence, we need to distinguish two cases.

Let us suppose first that c C d � b (� a). Restricted to the preimage of our neigh-
borhood of p, the divisors are

a yH C
�
a � .c C d/

�
E; b yK C

�
b � .c C d/

�
E; and c yH C d yK:

Here, yH and yK are the strict transforms of H and K. Let yM be the linear system
generated by these three divisors, and then yM 2 DM 2 � .c C d/2. On the preimage,
the linear system yM has at most two new base-points: the intersection points of yH and
yK with E. Locally near these points the three divisors spanning yM are respectively

a yH C
�
a � .c C d/

�
E;

�
b � .c C d/

�
E and c yH;

and �
a � .c C d/

�
E; b yK C

�
b � .c C d/

�
E and d yK:

We claim that for both points the coefficients of these three divisors satisfy the assump-
tion of Lemma 4.26.

Let us verify it for the first point yH \E: if c � .b � .c C d//, then define a0 WD c,
b0 WD b � .cC d/, c0 WD a, and d 0 WD a� .cC d/; otherwise, define a0 WD b � .cC d/,
b0 WD c, c0 WD a� .cC d/, and d 0 WD a. For both the cases,d 0 � b0 so that b0c0C a0d 0 �
a0d 0 � a0b0.

An analogous argument holds for the point yK \E, so Lemma 4.26 applies for both
points and the self-intersection of the new linear system yM at the final step is

yM 2
D
�
M 2
� .c C d/2

�
�
�
b � .c C d/

�
c �

�
a � .c C d/

�
d DM 2

� .ad C bc/:

It remains to discuss the case c C d � b.
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Take the pullback of the divisorsDi , and remove the fixed part, which this time is the
exceptional divisor bE of the blowup. Restricted to the preimage of our neighborhood
of p, the divisors Di are

a yH C .a � b/E; b yK; and c yH C d yK C .c C d � b/E:

Here, yM 2DM 2 � b2. If bD0 or aDb, then yM is base-point-free. In the first case bD0,
we get ad D bc C ad � ab D 0, so yM 2 DM 2 � b2 DM 2 DM 2 � .ad C bc/, and
we are done. In the second case aD b, we get, thanks to the assumptions ad C bc � ab
and b � c C d , that c C d D b D a, and we are done:

yM 2
DM 2

� b2 DM 2
� .ad C bc/:

It remains to consider when a � b D 0 or b D 0 does not hold. In this case, on
the preimage, the linear system yM would have precisely one new base-point, the
intersection point of yK and E. Locally near this point the three divisors spanning yM
are

.a � b/E; b OK; and d OK C .c C d � b/E:

We need to distinguish two cases, when .a� b/ < b or when .a� b/� b. In the first case
.a� b/ < b, we get .b;a� b/ < .a;b/. We define new coefficients a0 WD b, b0 WD a� b,
c0 WD d , and d 0 WD c C d � b. Otherwise, if .a � b/ � b, then .a � b; b/ < .a; b/,
and we define a0 WD a � b, b0 WD b, c0 WD c C d � b, and d 0 WD d . For both cases, the
new coefficients fulfill the inductive hypothesis.

Thanks to bc C ad � ab, we have

b0c0Ca0d 0D.a � b/dCb.cCd � b/Dad C bc � b2�ab � b2D.a � b/bDa0b0:

By induction, the self-intersection of the new linear system yM is equal to

yM 2
D.M 2

�b2/� .a0d 0Cb0c0/DM 2
� b2� .adCbc�b2/DM 2

� .adCbc/:

4.6. Example of the computation of the degree of the canonical map

In this section, we give an example of how to compute the degree of the canonical map
of a regular product-quotient surface of geometric genus three, whenever Property (#)
holds. In addition, in this way, we also show the main steps of the MAGMA script for
calculating the degree of the canonical map.

Let us consider the family of surfaces no. 1 in [17, Thm. 2.3], which have degree of
the canonical map 18.

Surfaces S of no. 1 of [17, Thm. 2.3] can be described by the following pair of
spherical systems of generators of the group G D S3 � Z23.
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q1 q2 q3

Branch point .1 W 1/ .0 W 1/ .�1 W 1/

Generator g1 WD .�; .1; 0// g2 WD .�
2; .2; 2// g3 WD .��; .0; 1//

q01 q02 q03 q04

Branch point .1 W 1/ .0 W 1/ .1 W �/ .�1 W 1/

Generator h1 WD .��; 0/ h2 WD .�; .1; 0// h3 WD .Id; .1; 1// h4 WD .�; .1; 2//

Here, � and � are a rotation (a 3-cycle) and a reflection (a transposition) of the group
S3, respectively. Meanwhile, the points qj are the branch points of the first G-covering
C1 ! P1, and the corresponding gj is the local monodromy of a point over qj . A
similar description holds for the points q0j and generators hj of the second G-covering
C2 ! P1.

Notice that the second covering depends on one parameter �, with � ¤ �1; 1 since
C2 is smooth.

Consider the three irreducible characters of S3, that is, the trivial character 1,
the character sgn computing the sign of a permutation, and the only 2-dimensional
irreducible character

� WD
1

2
.�reg � sgn � 1/;

where �reg is the character of the regular representation of S3.
Let us also fix a basis e1, e2 of Z23 and consider the dual characters "1, "2 of

e1 and e2, i.e. the characters defined by

"i .ae1 C be2/ WD �
aı1iCbı2i
3 ; �3 WD e

2�i
3 ;

where ıij is the Kronecker delta.
We apply the Chevalley–Weil formula [19, Thm. 2.8] to both curves C1 and C2

defining S to compute the canonical characters �1can and �2can, respectively:

�1can D "
2
1 � "

2
2 C sgn � "1 � "2 C sgn � "2 C sgn � "1

C � � "1 � "2 C � � "
2
1 � "2 C � � "1 � "

2
2I

�2can D sgn � "21 � "2 C sgn � "21 � "
2
2 C sgn � "1 � "2 C sgn � "1 C sgn � "22

C � � "1 C � � "2 C 2� � "
2
2 C sgn � "21 C "

2
1 C � � "

2
1 C � � "1 � "2:

We notice that the irreducible characters � such that � occurs on �1can and x� occurs on
�2can have degree one, so Property (#) is satisfied. These characters are precisely

sgn � "1 � "2; sgn � "2; and sgn � "1:

From Theorem 4.13, we have that

H 2;0.S/ D
�
H 1;0.C1/˝H

1;0.C2/
�S3�Z2

3
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decomposes into three pieces of dimension one:

H 1;0.C1/
sgn�"1�"2 ˝H 1;0.C2/

sgn�"2
1
�"2
2 ; H 1;0.C1/

sgn�"2 ˝H 1;0.C2/
sgn�"2

2 ;

H 1;0.C1/
sgn�"1 ˝H 1;0.C2/

sgn�"2
1 :

For each of these three pieces, Corollary 4.21 determines a generator of the associated
linear subsystem:

Rvert
.0;1/ CR

hor
.1;�/ C 2R

hor
.�1;1/; 2Rvert

.1;1/ C 2R
hor
.0;1/; 2Rvert

.�1;1/ C 4R
hor
.�1;1/:

Thus, the above three divisors are spanning the linear system jKC1�C2 jS3�Z2
3 .

Notice then jKC1�C2 jS3�Z2
3 has no fixed part, so that

M 2
D
�
2Rvert

.1;1/ C 2R
hor
.0;1/

�2
D 4 � 2 �

�
Rvert
.1;1/ �R

hor
.0;1/

�
D 8

54

6
�
54

3
D 24 � 54:

Furthermore, jKC1�C2 jS3�Z2
3 has precisely 81 (non-reduced) isolated base-points

Rvert
.1;1/
\Rhor

.�1;1/
. We can compute M 2 � yM 2 by applying Theorem 4.25, recursively

for each base-point of jKC1�C2 jS3�Z2
3 . Indeed, in a neighborhood of each of these

base-points, the three divisors are respectively

2Rhor
.�1;1/; 2Rvert

.1;1/; and 4Rhor
.�1;1/;

and sinceRvert
.1;1/

andRhor
.�1;1/

are transversal, then we are in the situation of Theorem 4.25,
with H D Rhor

.�1;1/
and K D Rvert

.1;1/
, a D 4, b D c D 2, and d D 0. This implies

ad C bc D 4 � ab D 8. The correction term is ab C cd D 4 for each of the 81
base-points. Thus,

M 2
� yM 2

D 4 � 81:

The degree of the canonical map is therefore given by

deg.ˆKS / D
1

54
yM 2
D

1

54

�
M 2
� .M 2

� yM 2/
�
D

1

54
.54 � 24 � 4 � 81/ D 18:

5. Comparison of results with the literature

In this section, we examine some of the most well-known classification results in the
literature on product-quotient surfaces and compare them with the results obtained
using our code. Specifically, we mention and discuss only the cases where there are
discrepancies.

Remark 5.1. We compared our results with respect to those of [7,8] (forK2 D 8) and
those listed in the tables of [4] (for 1 �K2 � 8). We noticed that there are two mistakes
since the authors forgot the possibility of exchanging the factors which provides only
one irreducible family of surfaces instead of two, so N D 1, in the cases G D Z25 and
G D Z25 Ì Z3.
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The mistake found for G D Z25 was already mentioned in [1, Rem. 3.2 (3)], while,
to our knowledge, that for G D Z25 Ì Z3 has never been noticed.

Remark 5.2. Comparing the results for K2 D 0 with respect those of [5], we noticed
that [5, Table 1] does not contain the following two other cases:

Sing.X/ t1 t2 Id.G/
1=4, 1=24, 3=4 2; 4; 6 2; 4; 6 h72; 40i

1=4, 1=24, 3=4 2; 4; 5 2; 4; 6 h120; 34i

Table 6.

We verified that the MAGMA script of [5] returns also these results, so the authors
just forgot to include them in their list.

We point out also that our code returns other three results than those of [5, Table 1]
and Table 6, listed in Table 7.

Sing.X/ t1 t2 Id.G/
2=5, 1=24, 3=5 2; 4; 5 2; 4; 5 h160; 234i

1=32, 1=22, 2=32 3; 3; 4 3; 3; 4 h48; 3i

1=32, 1=22, 2=32 3; 3; 4 2; 3; 7 h168; 42i

Table 7.

These cases were not listed in [5, Table 1] since they do not provide surfaces of
general type. Indeed, the invariant �.X/ is respectively equal to 1

3
, 2
5
, and 2

5
for such

cases, so that �.X/ < 1
2

and by [5, Thm. 5.3 and Cor. 5.4] they cannot give surfaces of
general type.

We also excluded manually the secondary output of ListGroups.0; 1/ (with a similar
approach such as that explained in Section 3 for the case .K2; �/ D .32; 4/) to prove
the following theorem.

Theorem 5.3. Let S be a product-quotient surface with K2S D pg.S/ D q.S/ D 0,
then one of the following holds:

(1) S realizes one of the families of surfaces described in [5, Table 1], Table 6, and
Table 7. Furthermore, all these surfaces are not of general type;

(2) S is the surface described in [5, Prop. 7.1]. In particular, it is a surface of general
type whose minimal model is a numerical Godeaux surface with torsion of order 4.

Remark 5.4. Regarding the classification obtained forK2 D�1, we get one case more
than those two found in [5], see Table 8. This happened because the script developed
in [5] looks for only surfaces of general type and so automatically excludes cases
with �.X/ < 1

2
. However, the last case found by us has �.X/ D 2

5
and so has been

automatically excluded.
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Sing.X/ t1 t2 Id.G/
1=5, 2=52, 4=5 2; 5; 5 3; 3; 5 h60; 5i

1=5, 1=24, 4=5 2; 4; 5 2; 4; 5 h160; 234i

1=55 5; 5; 5 5; 5; 5 h25; 2i

Table 8.

Furthermore, we found two irreducible families sharing the same algebraic data of
the group Z25 instead of only one family found in [5].

We have also excluded manually the secondary output of ListGroups.�1; 1/ to
prove the following theorem.

Theorem 5.5. Let S be a product-quotient surface withK2S D�1, pg.S/D q.S/D 0.
Then, S realizes one of the families of surfaces described in Table 8. Furthermore, the
first two cases of the table give product-quotient surfaces that are not of general type.
Instead, the last case with group Z25 gives two irreducible families of surfaces that are
not minimal and whose minimal model is a numerical Godeaux surface with torsion of
order 5.

Appendix

In this appendix, we list all regular product-quotient surfaces S of general type with
23 � K2S � 32 and pg.S/ D 3. In particular, we list the following information in the
columns of Tables 9 to 21:
• K2S is the self-intersection of the canonical class of S .
• G is the group, and Id is the identifier of the group in the MAGMA database of

small groups; hence, the pair hd; ni of each row denotes that G is the n-th group
of order d in the MAGMA database of small groups. Whenever G does not have
an easy description, we simply denote it by G.d; n/, the group in the MAGMA
database having identifier hd; ni.

• Sing.X/ is the singular locus of the quotient model X WD .C1 � C2/=G defining
the product-quotient surface S . It is given as a sequence of rational numbers with
multiplicities, describing the types of cyclic quotient singularities. For instance,
3=54 means 4 singular points of type 1

5
.1; 3/.

• t1 and t2 are the signatures of the corresponding spherical systems of generators,
cf. Definition 1.3.

• N is the number of irreducible families. Indeed our tables have 555 lines, but we
collect in the same line N families, which share all the other data. We employ the
symbol ‹ whenever we are unable to determine the exact number of families in a
row due to computational time constraints or machine memory overflow.

• deg.ˆS / contains, for each family of the row, the degree of the canonical map of a
surface S belonging to that family, whenever the computation of the degree can be
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done. For example, if there are N irreducible families in a row, where N D 3, and
the degrees listed in the deg.ˆS / box for that row are 12 and 16, it indicates that
the degree of the canonical map has been computed for surfaces from only two of
the three families. Specifically, the degree is 12 for one family and 16 for the other.
Furthermore, since the degree of the canonical map is not a topological invariant,
then it may happen that surfaces belonging to the same family have distinct degrees
of the canonical map. In this case, we simply list sequentially all degrees of the
canonical map of the surfaces belonging to that family. For instance, suppose
deg.ˆS / of a row is 12; .18; 16/; 18. This means the surfaces of two of these three
families have a degree of the canonical map that is constant on the family and equal
respectively to 12 and 18, while the other family has surfaces with a degree of the
canonical map equal to either 18 or 16.
The number 0 means that the image of ˆS has dimension 1.

For the groups occurring in Tables 9 to 21, we use the following notation:
Zkn is k-times the cyclic group of order n.
Sn is the symmetric group of n letters.
An is the alternating group.
Dn is the dihedral group of symmetries of the n-gon.
ASL.n; k/ is the affine special linear group of Zn

k
.

PSL.2; n/ is the group of 2 � 2 matrices over Zn with determinant 1 modulo the
subgroup generated by � Id.
SO.3; 7/ is the group of 3 � 3 orthogonal matrices over F7 with determinant 1.

He3 is the Heisenberg group of order 27:

He3 WD hx; y; zjz�1xyx�1y�1; x3; y3; z3; xz D zx; yz D zyi:

A 3-dimensional representation of He3 (over the field Z3) is given by sending

x 7!

0@1 1 0
0 1 0
0 0 1

1A ; y 7!

0@1 0 0
0 1 1
0 0 1

1A :
Q8 is the quaternion group:

Q8 WD hx; yjx
4; x2y�2; y�1xyxi:

K oH is the wreath product, so it is the semidirect productKH ÌH , whereKH is the
set of functions f WH ! K, with a group operation given by pointwise multiplication.
Here, H is acting on KH via left multiplication:

h � f WD f ı h�1; f WH ! K 2 KH :
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No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

1 32 26 28 Z32 h8; 5i 3 8; 162

2 32 25 212 Z32 h8; 5i 3 0; 4; 8

3 32 34 37 Z23 h9; 2i 2 6; 12

4 32 35 35 Z23 h9; 2i 1 9
5 32 23; 42 23; 42 Z22 Ì Z4 h16; 3i 2 16
6 32 22; 42 22; 44 Z22 Ì Z4 h16; 3i 2
7 32 22; 42 25; 42 Z22 Ì Z4 h16; 3i 6 8
8 32 25 25; 42 Z2 �D4 h16; 11i 4
9 32 23; 4 212 Z2 �D4 h16; 11i 6 0
10 32 23; 42 26 Z2 �D4 h16; 11i 2
11 32 22; 44 25 Z2 �D4 h16; 11i 1
12 32 26 26 Z2 �D4 h16; 11i 1 32
13 32 25 28 Z42 h16; 14i 13 0; 85; 167

14 32 26 26 Z42 h16; 14i 6 8; 163; 322

15 32 212 3; 42 S4 h24; 12i ?
16 32 24; 3 44 S4 h24; 12i 1
17 32 2; 3; 42 26 S4 h24; 12i 1
18 32 22; 32 22; 44 S4 h24; 12i 1
19 32 25 25; 6 Z22 � S3 h24; 14i 1
20 32 22; 42 44 G.32; 6/ h32; 6i 1
21 32 22; 42 23; 42 G.32; 22/ h32; 22i 7 16
22 32 22; 44 23; 4 Z22 oZ2 h32; 27i 2
23 32 23; 4 25; 42 Z22 oZ2 h32; 27i 30
24 32 22; 42 23; 42 Z22 oZ2 h32; 27i 1
25 32 23; 42 25 Z22 oZ2 h32; 27i 4
26 32 22; 42 26 Z22 oZ2 h32; 27i 4
27 32 22; 44 23; 4 Z22 ÌD4 h32; 28i 1
28 32 25 26 Z22 �D4 h32; 46i 4 24
29 32 23; 42 25 Z22 �D4 h32; 46i 2
30 32 23; 42 25 Q8 Ì Z22 h32; 49i 1
31 32 22; 4; 12 22; 42 D6 Ì Z4 h48; 14i 1
32 32 22; 44 3; 42 A4 Ì Z4 h48; 30i 3
33 32 23; 4 25; 6 S3 �D4 h48; 38i 1
34 32 42; 6 26 Z2 � S4 h48; 48i 3
35 32 2; 4; 6 212 Z2 � S4 h48; 48i ?
36 32 22; 42 24; 3 Z2 � S4 h48; 48i 2
37 32 22; 42 22; 62 Z2 � S4 h48; 48i 1
38 32 22; 44 23; 3 Z2 � S4 h48; 48i 4
39 32 23; 6 44 Z2 � S4 h48; 48i 1
40 32 23; 42 23; 6 Z2 � S4 h48; 48i 1
41 32 2; 3; 42 25 Z2 � S4 h48; 48i 1
42 32 73 73 Z27 h49; 2i 7 0; 5; 7; 10; 11; 142

Table 9. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 32.
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No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

43 32 2; 52 37 A5 h60; 5i 2
44 32 28 32; 5 A5 h60; 5i 1
45 32 24; 3 53 A5 h60; 5i 1
46 32 34 53 A5 h60; 5i 1
47 32 26 3; 52 A5 h60; 5i 2
48 32 22; 42 22; 42 G.64; 60/ h64; 60i 3 32
49 32 22; 42 22; 42 Z4 Ì .Z22 Ì Z4/ h64; 71i 1
50 32 23; 4 26 G.64; 73/ h64; 73i 1
51 32 23; 4 23; 42 G.64; 73/ h64; 73i 4
52 32 22; 42 22; 42 G.64; 75/ h64; 75i 1
53 32 23; 4 44 Z2 oZ22 h64; 138i 1
54 32 23; 4 23; 42 Z2 oZ22 h64; 138i 6
55 32 25 25 G.64; 211/ h64; 211i 1
56 32 25 25 Z22 �D8 h64; 250i 1
57 32 22; 4; 12 23; 4 Z22 ÌD12 h96; 89i 1
58 32 22; 42 42; 6 GL.2;Z4/ h96; 195i 1
59 32 2; 4; 6 22; 44 GL.2;Z4/ h96; 195i 10
60 32 22; 42 23; 6 Z22 � S4 h96; 226i 1
61 32 23; 42 3; 42 Z22 Ì S4 h96; 227i 1
62 32 23; 3 44 Z22 Ì S4 h96; 227i 3
63 32 26 3; 42 Z22 Ì S4 h96; 227i 3
64 32 24; 5 3; 42 S5 h120; 34i 1
65 32 2; 5; 6 44 S5 h120; 34i 2
66 32 2; 5; 6 23; 42 S5 h120; 34i 1
67 32 2; 4; 5 22; 44 Z42 ÌD5 h160; 234i ?
68 32 3; 72 43 PSL.2; 7/ h168; 42i 4
69 32 3; 42 73 PSL.2; 7/ h168; 42i 1
70 32 22; 42 32; 7 PSL.2; 7/ h168; 42i 1
71 32 23; 4 42; 6 G.192; 955/ h192; 955i 1
72 32 2; 4; 6 23; 42 G.192; 955/ h192; 955i 7
73 32 2; 4; 6 44 G.192; 955/ h192; 955i 2
74 32 2; 62 42; 10 Z2 � S5 h240; 189i 1
75 32 2; 4; 6 22; 102 Z2 � S5 h240; 189i 1
76 32 43 43 G.256; 295/ h256; 295i 3
77 32 43 43 G.256; 298/ h256; 298i 2
78 32 43 43 G.256; 306/ h256; 306i 2
79 32 2; 6; 7 2; 82 SO.3; 7/ h336; 208i 2
80 32 2; 3; 14 22; 42 Z2 � PSL.2; 7/ h336; 209i 1
81 32 2; 7; 14 3; 42 Z2 � PSL.2; 7/ h336; 209i 1
82 32 2; 6; 7 43 Z2 � PSL.2; 7/ h336; 209i 2
83 32 2; 6; 15 3; 42 Z3 Ì S5 h360; 120i 1
84 32 2; 4; 6 42; 10 Z22 Ì S5 h480; 951i 2
85 32 2; 3; 9 73 PSL.2; 8/ h504; 156i 6
86 32 2; 52 32; 11 PSL.2; 11/ h660; 13i 2

Table 10. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 32.
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No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

87 30 1=22 23; 4 210; 4 Z2 �D4 h16; 11i 6 0
88 30 1=22 24; 4 25; 4 Z2 �D4 h16; 11i 2 4
89 30 1=22 23; 8 25; 4 Z2 �D8 h32; 39i 1
90 30 1=22 23; 12 24; 4 S3 �D4 h48; 38i 1
91 30 1=22 23; 4 23; 6; 12 S3 �D4 h48; 38i 1
92 30 1=22 2; 4; 6 210; 4 Z2 � S4 h48; 48i ?
93 30 1=22 22; 3; 4 24; 4 Z2 � S4 h48; 48i 2
94 30 1=22 2; 36 2; 52 A5 h60; 5i 1
95 30 1=22 22; 4; 8 23; 8 .Z2 �D8/Ì Z2 h64; 128i 2
96 30 1=22 2; 6; 12 22; 3; 4 S3 � S4 h144; 183i 1
97 30 1=22 2; 73 32; 4 PSL.2; 7/ h168; 42i 4
98 30 1=22 32; 4 33; 6 ASL.2; 3/ h216; 153i 4
99 30 1=22 2; 4; 10 22; 3; 4 Z2 � S5 h240; 189i 1
100 30 1=22 2; 92 32; 6 G.324; 160/ h324; 160i 3
101 30 1=22 2; 4; 7 4; 62 Z2 � PSL.2; 7/ h336; 209i 2
102 30 1=22 2; 4; 5 4; 62 Z2 �A6 h720; 766i 2

103 29 1=3; 2=3 210; 3 3; 42 S4 h24; 12i ?
104 29 1=3; 2=3 23; 42; 6 3; 42 A4 Ì Z4 h48; 30i 3
105 29 1=3; 2=3 3; 42 44; 6 A4 Ì Z4 h48; 30i 1
106 29 1=3; 2=3 2; 4; 6 210; 3 Z2 � S4 h48; 48i ?
107 29 1=3; 2=3 23; 3 44; 6 Z2 � S4 h48; 48i 2
108 29 1=3; 2=3 23; 3 23; 42; 6 Z2 � S4 h48; 48i 4
109 29 1=3; 2=3 2; 4; 6 44; 6 GL.2;Z4/ h96; 195i 1
110 29 1=3; 2=3 2; 4; 6 23; 42; 6 GL.2;Z4/ h96; 195i 8
111 29 1=3; 2=3 23; 3; 4 3; 42 G.96; 227/ h96; 227i 3
112 29 1=3; 2=3 2; 3; 8 44; 6 G.192; 181/ h192; 181i 1
113 29 1=3; 2=3 2; 4; 6 3; 43 G.192; 955/ h192; 955i 2
114 29 1=3; 2=3 23; 3 4; 6; 8 G.192; 956/ h192; 956i 1
115 29 1=3; 2=3 23; 3 4; 6; 8 G.192; 1494/ h192; 1494i 1
116 29 1=3; 2=3 2; 4; 6 22; 6; 10 Z2 � S5 h240; 189i 2
117 29 1=3; 2=3 2; 4; 6 4; 6; 8 G.384; 5602/ h384; 5602i 2
118 29 1=3; 2=3 2; 3; 10 2; 4; 12 G.1320; 133/ h1320; 133i 4

119 28 1=24 22; 42 28; 42 Z2 �Z4 h8; 2i 1 0
120 28 1=24 25 211 Z32 h8; 5i 6 02; 43; 8

121 28 1=24 23; 43 25 Z2 �D4 h16; 11i 3
122 28 1=24 23; 4 28; 42 Z2 �D4 h16; 11i 5
123 28 1=24 23; 4 211 Z2 �D4 h16; 11i 14 0
124 28 1=24 25 26; 4 Z2 �D4 h16; 11i 6 8
125 28 1=24 22; 32 34; 62 Z3 � S3 h18; 3i 6 62

126 28 1=24 22; 35 3; 62 Z3 � S3 h18; 3i 1
127 28 1=24 22; 32 22; 35 Z3 Ì S3 h18; 4i 2
128 28 1=24 22; 32 23; 43 S4 h24; 12i 1

Table 11. Minimal product-quotient surfaces of general type with q D 0, pg D 3, and K2 2
¹30; 29; 28º.
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No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

129 28 1=24 211 3; 42 S4 h24; 12i 1
130 28 1=24 23; 62 25 Z22 � S3 h24; 14i 3
131 28 1=24 25 25; 3 Z22 � S3 h24; 14i 1
132 28 1=24 2; 42; 8 22; 42 Z4 oZ2 h32; 11i 1
133 28 1=24 23; 4 23; 43 Z22 oZ2 h32; 27i 4
134 28 1=24 23; 4 26; 4 Z22 oZ2 h32; 27i 30
135 28 1=24 23; 4 23; 43 Z22 ÌD4 h32; 28i 4
136 28 1=24 24; 8 25 Z2 �D8 h32; 39i 2
137 28 1=24 2; 42; 8 25 Z8 Ì Z22 h32; 43i 1
138 28 1=24 22; 4; 6 25 Z2 �D12 h48; 36i 1
139 28 1=24 23; 4 25; 3 S3 �D4 h48; 38i 1
140 28 1=24 22; 4; 6 25 S3 �D4 h48; 38i 2
141 28 1=24 23; 4 23; 62 S3 �D4 h48; 38i 2
142 28 1=24 22; 3; 42 23; 4 Z2 � S4 h48; 48i 3
143 28 1=24 23; 3 23; 43 Z2 � S4 h48; 48i 5
144 28 1=24 23; 4 42; 62 Z2 � S4 h48; 48i 2
145 28 1=24 2; 4; 6 211 Z2 � S4 h48; 48i ?
146 28 1=24 2; 4; 6 28; 42 Z2 � S4 h48; 48i ?
147 28 1=24 22; 4; 6 25 Z2 � S4 h48; 48i 2
148 28 1=24 2; 52 22; 35 A5 h60; 5i 1
149 28 1=24 23; 4 24; 8 .Z2 �D8/Ì Z2 h64; 128i 5
150 28 1=24 2; 42; 8 23; 4 D4 ÌD4 h64; 134i 1
151 28 1=24 2; 42; 8 23; 4 .Z4 oZ2/Ì Z2 h64; 135i 1
152 28 1=24 23; 16 25 Z2 �D16 h64; 186i 1
153 28 1=24 2; 32; 4 22; 32 Z3 Ì S4 h72; 43i 1
154 28 1=24 22; 4; 6 23; 4 Z22 ÌD12 h96; 89i 1
155 28 1=24 2; 8; 12 25 .SL.2; 3/Ì Z2/Ì Z2 h96; 193i 1
156 28 1=24 2; 4; 6 23; 43 GL.2;Z4/ h96; 195i 9
157 28 1=24 22; 4; 6 23; 4 Z22 � S4 h96; 226i 2
158 28 1=24 2; 4; 5 34; 62 S5 h120; 34i 2
159 28 1=24 23; 4 5; 62 S5 h120; 34i 1
160 28 1=24 2; 4; 6 22; 53 S5 h120; 34i 1
161 28 1=24 22; 5; 10 23; 3 Z2 �A5 h120; 35i 1
162 28 1=24 2; 6; 10 25 Z2 �A5 h120; 35i 1
163 28 1=24 23; 4 23; 16 G.128; 916/ h128; 916i 1
164 28 1=24 2; 4; 18 25 G.144; 109/ h144; 109i 1
165 28 1=24 22; 4; 6 23; 3 S3 � S4 h144; 183i 1
166 28 1=24 22; 3; 12 23; 3 S3 � S4 h144; 183i 1
167 28 1=24 2; 4; 5 23; 43 Z42 ÌD5 h160; 234i ?
168 28 1=24 2; 3; 8 45 G.192; 181/ h192; 181i 1
169 28 1=24 2; 5; 8 3; 62 SL.2; 5/Ì Z2 h240; 90i 1
170 28 1=24 2; 4; 6 22; 5; 10 Z2 � S5 h240; 189i 1

Table 12. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 28.
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No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /
171 28 1=24 2; 6; 10 23; 4 Z2 � S5 h240; 189i 2
172 28 1=24 2; 4; 8 3; 62 SO.3; 7/ h336; 208i 2
173 28 1=24 2; 4; 8 2; 62 Z2 � SO.3; 7/ h672; 1254i 2
174 28 1=24 2; 4; 6 2; 82 Z2 � SO.3; 7/ h672; 1254i 2
175 28 3=52 23; 5 33; 5 A5 h60; 5i 2
176 28 3=52 26; 5 32; 5 A5 h60; 5i 1
177 28 3=52 23; 5 3; 6; 10 Z2 �A5 h120; 35i 1
178 28 3=52 2; 4; 5 44; 5 Z42 ÌD5 h160; 234i ?
179 28 3=52 42; 5 42; 5 Z42 ÌD5 h160; 234i 3
180 28 3=52 2; 4; 5 23; 42; 5 Z42 ÌD5 h160; 234i ?
181 28 3=52 23; 5 42; 5 Z42 ÌD5 h160; 234i 3
182 28 3=52 23; 5 32; 5 A6 h360; 118i 1
183 28 3=52 32; 5 42; 5 A6 h360; 118i 2
184 28 3=52 2; 4; 5 33; 5 A6 h360; 118i 6
185 28 3=52 2; 4; 5 3; 6; 10 Z2 �A6 h720; 766i 2
186 27 1=5; 4=5 23; 5 33; 5 A5 h60; 5i 2
187 27 1=5; 4=5 26; 5 32; 5 A5 h60; 5i 1
188 27 1=5; 4=5 23; 5 3; 6; 10 Z2 �A5 h120; 35i 1
189 27 1=5; 4=5 2; 4; 5 44; 5 Z42 ÌD5 h160; 234i 7
190 27 1=5; 4=5 42; 5 42; 5 Z42 ÌD5 h160; 234i 2
191 27 1=5; 4=5 2; 4; 5 23; 42; 5 Z42 ÌD5 h160; 234i ?
192 27 1=5; 4=5 23; 5 42; 5 Z42 ÌD5 h160; 234i 3
193 27 1=5; 4=5 23; 5 32; 5 A6 h360; 118i 1
194 27 1=5; 4=5 32; 5 42; 5 A6 h360; 118i 2
195 27 1=5; 4=5 2; 4; 5 33; 5 A6 h360; 118i 6
196 27 1=5; 4=5 2; 4; 5 3; 6; 10 Z2 �A6 h720; 766i 2
197 27 1=3; 1=22; 2=3 2; 4; 6 28; 3; 4 Z2 � S4 h48; 48i ?

198 26 1=26 23; 4 29; 4 Z2 �D4 h16; 11i 14 0
199 26 1=26 23; 4 26; 43 Z2 �D4 h16; 11i 2
200 26 1=26 2; 62 23; 34 S3 � S3 h36; 10i 1
201 26 1=26 2; 33; 62 23; 3 S3 � S3 h36; 10i 2
202 26 1=26 23; 4 23; 4; 6 S3 �D4 h48; 38i 1
203 26 1=26 23; 3; 12 23; 4 S3 �D4 h48; 38i 1
204 26 1=26 2; 4; 6 26; 43 Z2 � S4 h48; 48i ?
205 26 1=26 22; 32; 4 23; 4 Z2 � S4 h48; 48i 2
206 26 1=26 23; 4 23; 4; 6 Z2 � S4 h48; 48i 3
207 26 1=26 2; 4; 6 29; 4 Z2 � S4 h48; 48i ?
208 26 1=26 2; 52 23; 34 A5 h60; 5i 1
209 26 1=26 23; 4 23; 28 D4 �D7 h112; 31i 1
210 26 1=26 2; 33; 62 2; 4; 5 S5 h120; 34i 1
211 26 1=26 2; 4; 6 22; 4; 10 Z2 � S5 h240; 189i 2
212 26 1=26 2; 62 2; 7; 8 SO.3; 7/ h336; 208i 2
213 26 1=4; 1=22; 3=4 23; 4; 8 23; 8 Z2 �D8 h32; 39i 2
214 26 1=4; 1=22; 3=4 2; 4; 5 34; 4; 6 S5 h120; 34i 2

Table 13. Minimal product-quotient surfaces of general type with q D 0, pg D 3, and K2 2
¹28; 27; 26º.
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No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /
215 26 1=4; 1=22; 3=4 2; 4; 7 33; 4 PSL.2; 7/ h168; 42i 2
216 26 1=4; 1=22; 3=4 2; 4; 72 32; 4 PSL.2; 7/ h168; 42i 4
217 26 1=4; 1=22; 3=4 32; 4 33; 4 ASL.2; 3/ h216; 153i 4
218 26 1=4; 1=22; 3=4 2; 4; 5 33; 4 A6 h360; 118i 8
219 26 1=32; 2=32 28; 32 3; 42 S4 h24; 12i 1
220 26 1=32; 2=32 22; 32 23; 3; 42 S4 h24; 12i 1
221 26 1=32; 2=32 22; 32 3; 44 S4 h24; 12i 2
222 26 1=32; 2=32 24; 3 32; 42 S4 h24; 12i 2
223 26 1=32; 2=32 22; 32 24; 62 Z2 �A4 h24; 13i 2
224 26 1=32; 2=32 2; 62 28; 32 Z2 �A4 h24; 13i 1
225 26 1=32; 2=32 3; 92 32; 92 Z3 �Z9 h27; 2i 6 63; 7; 9; 10

226 26 1=32; 2=32 24; 3 3; 82 GL.2; 3/ h48; 29i 1
227 26 1=32; 2=32 23; 3; 42 3; 42 A4 Ì Z4 h48; 30i 3
228 26 1=32; 2=32 2; 42; 62 3; 42 A4 Ì Z4 h48; 30i 2
229 26 1=32; 2=32 3; 42 3; 44 A4 Ì Z4 h48; 30i 2
230 26 1=32; 2=32 23; 3 3; 44 Z2 � S4 h48; 48i 2
231 26 1=32; 2=32 23; 32 42; 6 Z2 � S4 h48; 48i 1
232 26 1=32; 2=32 2; 42; 62 23; 3 Z2 � S4 h48; 48i 3
233 26 1=32; 2=32 2; 4; 6 28; 32 Z2 � S4 h48; 48i ?
234 26 1=32; 2=32 22; 3; 4 24; 3 Z2 � S4 h48; 48i 1
235 26 1=32; 2=32 23; 3 23; 3; 42 Z2 � S4 h48; 48i 3
236 26 1=32; 2=32 22; 3; 4 22; 62 Z2 � S4 h48; 48i 1
237 26 1=32; 2=32 2; 62 24; 62 Z22 �A4 h48; 49i 5 8
238 26 1=32; 2=32 22; 32 23; 32 Z42 Ì Z3 h48; 50i 2
239 26 1=32; 2=32 23; 32 3; 52 A5 h60; 5i 2
240 26 1=32; 2=32 26; 3 32; 5 A5 h60; 5i 1
241 26 1=32; 2=32 22; 32 3; 82 G.96; 64/ h96; 64i 2
242 26 1=32; 2=32 2; 62 32; 42 .Z22 oZ2/Ì Z3 h96; 70i 2
243 26 1=32; 2=32 22; 32 4; 62 G.96; 72/ h96; 72i 2
244 26 1=32; 2=32 2; 6; 8 22; 62 Z2 � GL.2; 3/ h96; 189i 1
245 26 1=32; 2=32 22; 3; 4 42; 6 GL.2;Z4/ h96; 195i 2
246 26 1=32; 2=32 2; 4; 6 2; 42; 62 GL.2;Z4/ h96; 195i 1
247 26 1=32; 2=32 2; 4; 6 3; 44 GL.2;Z4/ h96; 195i 1
248 26 1=32; 2=32 2; 4; 6 23; 3; 42 GL.2;Z4/ h96; 195i 8
249 26 1=32; 2=32 23; 3 32; 42 G.96; 227/ h96; 227i 4
250 26 1=32; 2=32 3; 42 32; 42 Z22 Ì S4 h96; 227i 2
251 26 1=32; 2=32 23; 32 3; 42 Z22 Ì S4 h96; 227i 2
252 26 1=32; 2=32 2; 5; 6 32; 42 S5 h120; 34i 2
253 26 1=32; 2=32 22; 62 3; 42 S5 h120; 34i 1
254 26 1=32; 2=32 22; 3; 4 32; 7 PSL.2; 7/ h168; 42i 1
255 26 1=32; 2=32 2; 3; 8 2; 42; 62 G.192; 181/ h192; 181i 2
256 26 1=32; 2=32 2; 3; 8 3; 44 G.192; 181/ h192; 181i 1
257 26 1=32; 2=32 2; 62 4; 62 Z2 oA4 h192; 201i 3
258 26 1=32; 2=32 22; 3; 4 3; 42 Z32 Ì S4 h192; 1493i 3

Table 14. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 26.



on the classification of regular product-quotient surfaces 59

No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

259 26 1=32; 2=32 23; 3 3; 82 G.192; 1494/ h192; 1494i 1

260 26 1=32; 2=32 2; 5; 6 3; 82 SL.2; 5/Ì Z2 h240; 90i 1
261 26 1=32; 2=32 2; 122 3; 42 A5 Ì Z4 h240; 91i 1
262 26 1=32; 2=32 2; 62 42; 6 Z2 � S5 h240; 189i 1
263 26 1=32; 2=32 32; 4 4; 62 G.384; 4/ h384; 4i 2
264 26 1=32; 2=32 2; 3; 11 3; 52 PSL.2; 11/ h660; 13i 6
265 26 1=32; 2=32 2; 3; 7 3; 132 PSL.2; 13/ h1092; 25i 12
266 26 1=32; 2=32 2; 3; 7 3; 82 G.1344; 814/ h1344; 814i 8

267 26 1=4; 1=22; 3=4 32; 4 32; 4 G.1944; 3875/ h1944; 3875i 2

268 25 1=3; 1=24; 2=3 29; 3 3; 42 S4 h24; 12i 1

269 25 1=3; 1=24; 2=3 2; 4; 6 26; 3; 42 Z2 � S4 h48; 48i ?
270 25 1=3; 1=24; 2=3 23; 3 24; 4; 6 Z2 � S4 h48; 48i 4
271 25 1=3; 1=24; 2=3 2; 4; 6 29; 3 Z2 � S4 h48; 48i ?
272 25 1=3; 1=24; 2=3 2; 43; 6 23; 3 Z2 � S4 h48; 48i 2
273 25 1=3; 1=24; 2=3 22; 8; 12 23; 3 G.96; 193/ h96; 193i 1
274 25 1=3; 1=24; 2=3 2; 4; 6 24; 4; 6 GL.2;Z4/ h96; 195i 6
275 25 1=3; 1=24; 2=3 2; 4; 6 2; 43; 6 GL.2;Z4/ h96; 195i 1
276 25 1=3; 1=24; 2=3 2; 4; 6 22; 3; 52 S5 h120; 34i 1
277 25 1=3; 1=24; 2=3 22; 5; 6 3; 42 S5 h120; 34i 1
278 25 1=3; 1=24; 2=3 22; 5; 6 23; 3 Z2 �A5 h120; 35i 1
279 25 1=3; 1=24; 2=3 2; 3; 8 2; 43; 6 G.192; 181/ h192; 181i 3
280 25 1=3; 1=24; 2=3 2; 4; 6 22; 5; 6 Z2 � S5 h240; 189i 2
281 25 1=3; 1=24; 2=3 2; 4; 6 2; 10; 12 Z22 Ì S5 h480; 951i 2

282 25 1=3; 2=52; 2=3 2; 6; 10 22; 3; 5 Z2 �A5 h120; 35i 1

283 24 1=28 26 210 Z22 h4; 2i 1 0

284 24 1=28 23; 42 24; 42 Z2 �Z4 h8; 2i 1 8
285 24 1=28 22; 42 27; 42 Z2 �Z4 h8; 2i 1 2
286 24 1=28 22; 42 24; 44 Z2 �Z4 h8; 2i 2 2, 8
287 24 1=28 22; 42 210 D4 h8; 3i 1
288 24 1=28 24; 42 26 D4 h8; 3i 1
289 24 1=28 26 27 Z32 h8; 5i 11 43; 62; 83; 122; 16

290 24 1=28 25 210 Z32 h8; 5i 14 04; 47; 6; 82

291 24 1=28 22; 62 27 D6 h12; 4i 1
292 24 1=28 22; 32; 62 25 D6 h12; 4i 1
293 24 1=28 23; 6 210 D6 h12; 4i 1
294 24 1=28 23; 3; 6 26 D6 h12; 4i 1
295 24 1=28 2; 43 44 Z24 h16; 2i 1 12
296 24 1=28 22; 42 24; 42 Z22 Ì Z4 h16; 3i 13 83

297 24 1=28 22; 82 26 D8 h16; 7i 2
298 24 1=28 22; 42 24; 42 Z22 �Z4 h16; 10i 10 84; 124; 162

299 24 1=28 22; 42 27 Z2 �D4 h16; 11i 7
300 24 1=28 24; 42 25 Z2 �D4 h16; 11i 14
301 24 1=28 23; 4 24; 44 Z2 �D4 h16; 11i 1

Table 15. Minimal product-quotient surfaces of general type with q D 0, pg D 3, and K2 2
¹26; 25; 24º.



f. fallucca 60

No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

302 24 1=28 23; 42 24; 4 Z2 �D4 h16; 11i 2
303 24 1=28 23; 4 210 Z2 �D4 h16; 11i 27 0
304 24 1=28 25 27 Z2 �D4 h16; 11i 4 16
305 24 1=28 24; 4 26 Z2 �D4 h16; 11i 14 82

306 24 1=28 23; 4 27; 42 Z2 �D4 h16; 11i 9
307 24 1=28 2; 43 26 D4 Ì Z2 h16; 13i 1
308 24 1=28 25 27 Z42 h16; 14i 13 85; 124; 164

309 24 1=28 22; 32 3; 64 Z3 � S3 h18; 3i 3 0, 6
310 24 1=28 2; 32; 6 22; 33 Z3 � S3 h18; 3i 2
311 24 1=28 24; 33 3; 62 Z3 � S3 h18; 3i 1
312 24 1=28 2; 34; 6 22; 32 Z3 � S3 h18; 3i 3 6
313 24 1=28 22; 32 24; 33 Z3 Ì S3 h18; 4i 2
314 24 1=28 22; 33 24; 3 Z3 Ì S3 h18; 4i 2
315 24 1=28 23; 6 24; 42 Z3 ÌD4 h24; 8i 1
316 24 1=28 22; 42 23; 3; 6 Z3 ÌD4 h24; 8i 1
317 24 1=28 22; 33 22; 42 S4 h24; 12i 1
318 24 1=28 2; 43 24; 3 S4 h24; 12i 1
319 24 1=28 210 3; 42 S4 h24; 12i 1
320 24 1=28 22; 32 24; 42 S4 h24; 12i 1
321 24 1=28 25 44 S4 h24; 12i 1
322 24 1=28 23; 3; 6 25 Z22 � S3 h24; 14i 3
323 24 1=28 23; 6 27 Z22 � S3 h24; 14i 11
324 24 1=28 25 26 Z22 � S3 h24; 14i 3
325 24 1=28 22; 142 25 D14 h28; 3i 2
326 24 1=28 23; 14 26 D14 h28; 3i 1
327 24 1=28 2; 43 22; 42 G.32; 6/ h32; 6i 1
328 24 1=28 22; 42 22; 82 D4 Ì Z4 h32; 9i 6
329 24 1=28 23; 42 42; 8 Z4 oZ2 h32; 11i 2
330 24 1=28 2; 43 22; 42 Z4 �D4 h32; 25i 4
331 24 1=28 24; 4 25 Z22 oZ2 h32; 27i 3
332 24 1=28 23; 4 24; 42 Z22 oZ2 h32; 27i 27
333 24 1=28 2; 43 25 Z22 oZ2 h32; 27i 1
334 24 1=28 22; 42 24; 4 Z22 oZ2 h32; 27i 3
335 24 1=28 23; 4 27 Z22 oZ2 h32; 27i 10
336 24 1=28 23; 4 24; 42 Z22 ÌD4 h32; 28i 9
337 24 1=28 22; 42 24; 4 Z22 ÌD4 h32; 28i 7
338 24 1=28 22; 42 24; 4 Z4 ÌD4 h32; 34i 3
339 24 1=28 23; 8 26 Z2 �D8 h32; 39i 5
340 24 1=28 24; 4 25 Z2 �D8 h32; 39i 1
341 24 1=28 22; 82 25 Z2 �D8 h32; 39i 4
342 24 1=28 23; 42 23; 8 Z8 Ì Z22 h32; 43i 1
343 24 1=28 22; 82 25 Z8 Ì Z22 h32; 43i 1
344 24 1=28 24; 4 25 Z22 �D4 h32; 46i 5
345 24 1=28 24; 4 25 Q8 Ì Z22 h32; 49i 1

Table 16. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 24.



on the classification of regular product-quotient surfaces 61

No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

346 24 1=28 2; 62 24; 33 S3 � S3 h36; 10i 2

347 24 1=28 22; 32; 62 23; 3 S3 � S3 h36; 10i 3
348 24 1=28 22; 3; 6 22; 62 S3 � S3 h36; 10i 1
349 24 1=28 23; 3 3; 64 S3 � S3 h36; 10i 2
350 24 1=28 22; 3; 6 24; 3 S3 � S3 h36; 10i 1
351 24 1=28 23; 3; 6 23; 6 S3 � S3 h36; 10i 2
352 24 1=28 22; 62 63 Z6 � S3 h36; 12i 1
353 24 1=28 22; 3; 6 22; 62 G.36; 13/ h36; 13i 1
354 24 1=28 22; 3; 6 24; 3 G.36; 13/ h36; 13i 1
355 24 1=28 22; 82 23; 6 Z3 ÌD8 h48; 15i 2
356 24 1=28 22; 32 22; 82 GL.2; 3/ h48; 29i 2
357 24 1=28 2; 44 3; 42 A4 Ì Z4 h48; 30i 1
358 24 1=28 25 25 Z2 �D12 h48; 36i 1
359 24 1=28 23; 4 26 S3 �D4 h48; 38i 2
360 24 1=28 23; 6 24; 4 S3 �D4 h48; 38i 5
361 24 1=28 23; 3; 6 23; 4 S3 �D4 h48; 38i 1
362 24 1=28 2; 4; 6 27; 42 Z2 � S4 h48; 48i ?
363 24 1=28 22; 42 22; 42 Z2 � S4 h48; 48i 1
364 24 1=28 2; 4; 6 210 Z2 � S4 h48; 48i ?
365 24 1=28 23; 6 24; 4 Z2 � S4 h48; 48i 3
366 24 1=28 2; 4; 6 24; 44 Z2 � S4 h48; 48i 3
367 24 1=28 23; 3 24; 42 Z2 � S4 h48; 48i 7
368 24 1=28 22; 3; 6 22; 42 Z2 � S4 h48; 48i 2
369 24 1=28 2; 44 23; 3 Z2 � S4 h48; 48i 1
370 24 1=28 23; 3; 6 23; 4 Z2 � S4 h48; 48i 2
371 24 1=28 22; 42 25 Z2 � S4 h48; 48i 1
372 24 1=28 2; 43 23; 6 Z2 � S4 h48; 48i 1
373 24 1=28 25 25 Z32 � S3 h48; 51i 1
374 24 1=28 2; 32; 6 22; 32 He3Ì Z2 h54; 5i 1
375 24 1=28 2; 32; 6 22; 32 Z23 Ì S3 h54; 8i 1
376 24 1=28 2; 32; 6 3; 62 S3 �Z23 h54; 12i 9 12; .16; 18/; .13; 15/; 18; 24

377 24 1=28 2; 32; 6 22; 32 G.54; 13/ h54; 13i 4
378 24 1=28 22; 42 23; 14 D14 Ì Z2 h56; 7i 1
379 24 1=28 23; 14 25 Z22 �D7 h56; 12i 3
380 24 1=28 2; 52 24; 33 A5 h60; 5i 1
381 24 1=28 22; 32 22; 52 A5 h60; 5i 2
382 24 1=28 22; 42 42; 8 G.64; 8/ h64; 8i 1
383 24 1=28 2; 4; 8 2; 44 G.64; 8/ h64; 8i 4
384 24 1=28 2; 43 43 G.64; 23/ h64; 23i 6
385 24 1=28 23; 4 24; 4 G.64; 73/ h64; 73i 2
386 24 1=28 23; 4 24; 4 G.64; 128/ h64; 128i 1
387 24 1=28 23; 8 25 G.64; 128/ h64; 128i 1
388 24 1=28 22; 82 23; 4 G.64; 128/ h64; 128i 1

Table 17. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 24.



f. fallucca 62

No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

389 24 1=28 22; 42 23; 8 G.64; 130/ h64; 130i 1
390 24 1=28 22; 42 23; 8 D4 ÌD4 h64; 134i 1
391 24 1=28 2; 43 23; 4 D4 ÌD4 h64; 134i 1
392 24 1=28 23; 4 24; 4 Z2 oZ22 h64; 138i 5
393 24 1=28 2; 43 23; 4 Z2 oZ22 h64; 138i 2
394 24 1=28 23; 4 24; 4 Z4 ÌD8 h64; 140i 1
395 24 1=28 22; 82 23; 4 Z4 ÌD8 h64; 140i 1
396 24 1=28 22; 42 23; 8 Z22 ÌD8 h64; 147i 1
397 24 1=28 22; 42 23; 8 G.64; 150/ h64; 150i 1
398 24 1=28 2; 6; 12 24; 3 Z23 ÌD4 h72; 23i 1
399 24 1=28 2; 4; 6 22; 32; 62 S3 oZ2 h72; 40i 1
400 24 1=28 22; 3; 6 22; 32 Z3 Ì S4 h72; 43i 1
401 24 1=28 22; 32 22; 42 Z3 Ì S4 h72; 43i 1
402 24 1=28 22; 32 63 S3 �A4 h72; 44i 1
403 24 1=28 23; 6 25 Z2 � S3 � S3 h72; 46i 1
404 24 1=28 23; 6 23; 14 S3 �D7 h84; 8i 1
405 24 1=28 23; 4 25 Z22 ÌD12 h96; 89i 1
406 24 1=28 23; 6 23; 8 S3 �D8 h96; 117i 1
407 24 1=28 2; 4; 12 2; 43 Z4 � S4 h96; 186i 3
408 24 1=28 2; 4; 12 24; 4 Z4 Ì S4 h96; 187i 2
409 24 1=28 22; 82 23; 3 G.96; 193/ h96; 193i 2
410 24 1=28 2; 4; 6 24; 42 GL.2;Z4/ h96; 195i 6
411 24 1=28 2; 4; 6 2; 44 GL.2;Z4/ h96; 195i 3
412 24 1=28 24; 4 3; 42 Z22 Ì S4 h96; 227i 1
413 24 1=28 2; 43 23; 3 Z22 Ì S4 h96; 227i 2
414 24 1=28 2; 62 24; 3 G.108; 17/ h108; 17i 1
415 24 1=28 23; 4 23; 14 D4 �D7 h112; 31i 1
416 24 1=28 2; 4; 5 3; 64 S5 h120; 34i 2
417 24 1=28 23; 5 3; 62 S5 h120; 34i 1
418 24 1=28 2; 43 2; 5; 6 S5 h120; 34i 1
419 24 1=28 2; 62 22; 52 S5 h120; 34i 1
420 24 1=28 23; 6 42; 5 S5 h120; 34i 1
421 24 1=28 2; 34; 6 2; 4; 5 S5 h120; 34i 1
422 24 1=28 2; 4; 5 22; 32; 62 S5 h120; 34i 1
423 24 1=28 2; 5; 6 24; 4 S5 h120; 34i 1
424 24 1=28 2; 5; 10 22; 3; 6 Z2 �A5 h120; 35i 1
425 24 1=28 2; 5; 10 25 Z2 �A5 h120; 35i 1
426 24 1=28 2; 102 23; 6 Z2 �A5 h120; 35i 1
427 24 1=28 2; 3; 10 27 Z2 �A5 h120; 35i 1
428 24 1=28 22; 52 23; 3 Z2 �A5 h120; 35i 1
429 24 1=28 2; 4; 8 2; 43 G.128; 75/ h128; 75i 4
430 24 1=28 23; 4 23; 8 G.128; 327/ h128; 327i 1
431 24 1=28 23; 4 23; 8 G.128; 928/ h128; 928i 1
432 24 1=28 2; 4; 5 2; 44 Z42 ÌD5 h160; 234i 5
433 24 1=28 2; 4; 5 24; 42 Z42 ÌD5 h160; 234i ?

Table 18. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 24.



on the classification of regular product-quotient surfaces 63

No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

434 24 1=28 2; 6; 9 3; 62 Z3 o S3 h162; 10i 4
435 24 1=28 2; 72 22; 32 PSL.2; 7/ h168; 42i 1
436 24 1=28 24; 7 32; 4 PSL.2; 7/ h168; 42i 2
437 24 1=28 2; 3; 8 2; 44 G.192; 181/ h192; 181i 1
438 24 1=28 2; 4; 6 24; 4 G.192; 955/ h192; 955i 5
439 24 1=28 2; 4; 6 2; 43 G.192; 955/ h192; 955i 1
440 24 1=28 2; 4; 6 22; 62 G.216; 87/ h216; 87i 1
441 24 1=28 2; 4; 10 23; 6 Z2 � S5 h240; 189i 1
442 24 1=28 2; 102 23; 3 Z22 �A5 h240; 190i 1
443 24 1=28 2; 4; 5 22; 82 G.320; 1582/ h320; 1582i 5
444 24 1=28 2; 4; 10 23; 4 G.320; 1636/ h320; 1636i 2
445 24 1=28 2; 52 22; 32 A6 h360; 118i 1
446 24 1=28 2; 3; 10 22; 3; 6 S3 �A5 h360; 121i 1
447 24 1=28 2; 4; 6 23; 8 G.384; 5602/ h384; 5602i 3
448 24 1=28 2; 3; 8 2; 32; 6 AGL.2; 3/ h432; 734i 2
449 24 1=28 2; 3; 8 2; 6; 21 G.1008; 881/ h1008; 881i 4
450 24 2=52; 1=24 2; 4; 5 24; 4; 5 Z42 ÌD5 h160; 234i ?
451 24 2=52; 1=24 2; 4; 5 2; 43; 5 Z42 ÌD5 h160; 234i 4
452 24 2=52; 1=24 2; 4; 5 22; 8; 10 G.320; 1582/ h320; 1582i 4
453 24 2=54 24; 52 32; 5 A5 h60; 5i 1
454 24 2=54 24; 5 3; 52 A5 h60; 5i 1
455 24 2=54 2; 52 24; 52 Z42 Ì Z5 h80; 49i 5
456 24 2=54 3; 152 32; 5 Z3 �A5 h180; 19i 1
457 24 2=54 2; 4; 5 2; 42; 52 Z42 ÌD5 h160; 234i 6
458 24 2=54 2; 52 2; 52 G.1280; �/ h1280; 1116310i 2
459 24 1=42; 3=42 23; 4 29; 4 Z2 �D4 h16; 11i 6 0
460 24 1=42; 3=42 29; 4 3; 42 S4 h24; 12i 1
461 24 1=42; 3=42 23; 4 34; 42 S4 h24; 12i 2
462 24 1=42; 3=42 3; 42 34; 42 G.36; 9/ h36; 9i 1
463 24 1=42; 3=42 2; 4; 6 29; 4 Z2 � S4 h48; 48i ?
464 24 1=42; 3=42 2; 4; 5 34; 42 S5 h120; 34i 2
465 24 1=42; 3=42 3; 42 4; 72 PSL.2; 7/ h168; 42i 2
466 24 1=42; 3=42 2; 4; 6 22; 4; 10 Z2 � S5 h240; 189i 1
467 24 1=4; 1=24; 3=4 2; 33; 4; 6 2; 4; 6 S3 oZ2 h72; 40i 1
468 24 1=4; 1=24; 3=4 2; 33; 4; 6 2; 4; 5 S5 h120; 34i 1
469 24 1=4; 1=24; 3=4 2; 4; 14 2; 4; 14 D7 oZ2 h392; 37i 2
470 24 1=32; 1=22; 2=32 2; 4; 6 26; 32; 4 Z2 � S4 h48; 48i ?
471 24 1=32; 1=22; 2=32 2; 3; 72 32; 4 PSL.2; 7/ h168; 42i 4
472 24 3=102; 1=22 2; 3; 10 2; 8; 10 G.720; 764/ h720; 764i 2
473 24 3=102; 1=22 2; 3; 10 2; 4; 10 G.1320; 133/ h1320; 133i 2
474 24 3=82; 1=2; 3=4 2; 3; 8 2; 43; 8 G.192; 181/ h192; 181i 2
475 23 1=33; 2=33 34 36 Z23 h9; 2i 6 65; 9

476 23 1=33; 2=33 26; 33 3; 42 S4 h24; 12i 1
477 23 1=33; 2=33 22; 32 24; 3; 6 Z2 �A4 h24; 13i 2 8
478 23 1=33; 2=33 22; 32 22; 63 Z2 �A4 h24; 13i 1

Table 19. Minimal product-quotient surfaces of general type with q D 0, pg D 3, and K2 2
¹24; 23º.



f. fallucca 64

No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

479 23 1=33; 2=33 2; 62 26; 33 Z2 �A4 h24; 13i 1
480 23 1=33; 2=33 34 34 He3 h27; 3i 5
481 23 1=33; 2=33 2; 33 34 Z3 �A4 h36; 11i 4
482 23 1=33; 2=33 32; 6 36 Z3 �A4 h36; 11i 6
483 23 1=33; 2=33 2; 3; 42; 6 3; 42 A4 Ì Z4 h48; 30i 2
484 23 1=33; 2=33 2; 3; 42; 6 23; 3 Z2 � S4 h48; 48i 3
485 23 1=33; 2=33 2; 4; 6 26; 33 Z2 � S4 h48; 48i ?
486 23 1=33; 2=33 2; 62 24; 3; 6 Z22 �A4 h48; 49i 6 8
487 23 1=33; 2=33 2; 62 22; 63 Z22 �A4 h48; 49i 1
488 23 1=33; 2=33 32; 21 34 .Z3 �Z7/Ì Z3 h63; 3i 8
489 23 1=33; 2=33 22; 32 3; 122 Z3 � S4 h72; 42i 1
490 23 1=33; 2=33 22; 32 63 S3 �A4 h72; 44i 1
491 23 1=33; 2=33 22; 3; 6 22; 32 S3 �A4 h72; 44i 3
492 23 1=33; 2=33 32; 9 34 Z3 oZ3 h81; 7i 4
493 23 1=33; 2=33 32; 9 34 He3Ì Z3 h81; 9i 8
494 23 1=33; 2=33 22; 63 32; 4 G.96; 3/ h96; 3i 3
495 23 1=33; 2=33 2; 3; 42; 6 2; 4; 6 GL.2;Z4/ h96; 195i 1
496 23 1=33; 2=33 32; 6 34 Z26 Ì Z3 h108; 22i 12
497 23 1=33; 2=33 2; 33 32; 6 A4 �A4 h144; 184i 2
498 23 1=33; 2=33 2; 62 22; 3; 6 Z2 � S3 �A4 h144; 190i 2
499 23 1=33; 2=33 22; 3; 6 32; 5 Z3 �A5 h180; 19i 1
500 23 1=33; 2=33 2; 3; 15 34 Z3 �A5 h180; 19i 1
501 23 1=33; 2=33 2; 3; 42; 6 2; 3; 8 G.192; 181/ h192; 181i 2
502 23 1=33; 2=33 32; 4 34 ASL.2; 3/ h216; 153i 2
503 23 1=33; 2=33 32; 9 32; 9 .He3Ì Z3/Ì Z3 h243; 26i 7
504 23 1=33; 2=33 32; 9 32; 9 G.243; 28/ h243; 28i 18
505 23 1=33; 2=33 32; 6 32; 21 .A4 �Z7/Ì Z3 h252; 27i 4
506 23 1=33; 2=33 2; 3; 12 22; 3; 6 A4 � S4 h288; 1024i 2
507 23 1=33; 2=33 32; 6 32; 9 .Z22 � He3/Ì Z3 h324; 54i 9
508 23 1=33; 2=33 32; 6 32; 6 .Z3 �A4/Ì A4 h432; 526i 6
509 23 1=33; 2=33 32; 4 32; 21 Z3 � PSL.2; 7/ h504; 157i 4
510 23 1=33; 2=33 32; 4 32; 6 G.864; 2666/ h864; 2666i 8
511 23 1=33; 2=33 2; 3; 7 3; 6; 8 G.1344; 814/ h1344; 814i 16
512 23 3=8; 1=24; 5=8 23; 16 23; 16 Z2 �D16 h64; 186i 2
513 23 1=3; 1=26; 2=3 22; 4; 6 23; 12 Z2 �D12 h48; 36i 1
514 23 1=3; 1=26; 2=3 22; 4; 6 23; 12 S3 �D4 h48; 38i 1
515 23 1=3; 1=26; 2=3 22; 3; 4 22; 4; 6 Z2 � S4 h48; 48i 2
516 23 1=3; 1=26; 2=3 2; 4; 6 27; 3; 4 Z2 � S4 h48; 48i ?
517 23 1=3; 1=26; 2=3 2; 4; 6 24; 3; 43 Z2 � S4 h48; 48i ?
518 23 1=3; 1=26; 2=3 22; 3; 4 3; 4; 8 G.96; 64/ h96; 64i 1
519 23 1=3; 1=26; 2=3 2; 6; 8 22; 4; 6 Z2 � GL.2; 3/ h96; 189i 1
520 23 1=3; 1=26; 2=3 2; 6; 18 23; 9 S3 �D9 h108; 16i 3
521 23 1=3; 1=26; 2=3 2; 4; 6 22; 4; 6 Z2 � S5 h240; 189i 3
522 23 1=3; 1=26; 2=3 2; 4; 6 2; 6; 8 Z2 � SO.3; 7/ h672; 1254i 4

Table 20. Minimal product-quotient surfaces of general type with q D 0, pg D 3, andK2 D 23.



on the classification of regular product-quotient surfaces 65

No. K2S Sing.X/ t1 t2 G Id N deg.ˆS /

523 25 1=7; 2=72 2; 4; 7 33; 7 PSL.2; 7/ h168; 42i 2

524 25 1=7; 2=72 2; 4; 7 3; 6; 14 Z2 � PSL.2; 7/ h336; 209i 1
525 25 1=7; 2=72 2; 3; 7 4; 7; 8 G.1344; 814/ h1344; 814i 8
526 24 1=5; 1=3; 2=3; 4=5 2; 6; 10 22; 3; 5 Z2 �A5 h120; 35i 1
527 24 1=62; 1=22; 2=3 2; 4; 6 44; 6 GL.2;Z4/ h96; 195i 2
528 24 1=62; 1=22; 2=3 2; 4; 6 23; 42; 6 GL.2;Z4/ h96; 195i 14
529 24 1=62; 1=22; 2=3 2; 5; 6 4; 6; 8 SL.2; 5/Ì Z2 h240; 90i 2
530 24 1=62; 1=22; 2=3 2; 4; 6 4; 6; 8 G.384; 5604/ h384; 5604i 4
531 24 1=62; 1=22; 2=3 2; 4; 6 4; 6; 8 G.384; 5677/ h384; 5677i 4
532 24 1=44; 1=22 2; 42; 8 22; 42 Z4 oZ2 h32; 11i 1
533 24 1=44; 1=22 23; 4 23; 43 Z22 ÌD4 h32; 28i 4
534 24 1=44; 1=22 2; 4; 8 23; 43 Z2 oZ4 h64; 32i 4
535 24 1=44; 1=22 2; 4; 8 2; 42; 8 G.128; 136/ h128; 136i 1
536 24 1=44; 1=22 2; 3; 8 45 G.192; 181/ h192; 181i 1
537 24 1=82; 1=4; 1=2 2; 3; 8 22; 43; 8 G.192; 181/ h192; 181i 3

538 24 1=6; 1=22; 5=6 2; 4; 6 29; 6 Z2 � S4 h48; 48i ?
539 24 1=6; 1=22; 5=6 2; 42; 6 23; 6 Z2 � S4 h48; 48i 1
540 24 1=6; 1=22; 5=6 24; 6 42; 6 Z2 � S4 h48; 48i 2
541 24 1=6; 1=22; 5=6 2; 4; 6 2; 42; 6 G.192; 955/ h192; 955i 4
542 24 1=6; 1=22; 5=6 2; 6; 8 23; 6 G.192; 956/ h192; 956i 1
543 24 1=6; 1=22; 5=6 2; 6; 7 2; 6; 8 SO.3; 7/ h336; 208i 2
544 24 1=6; 1=22; 5=6 2; 4; 6 2; 6; 8 G.768; 1086051/ h768; 1086051i 2
545 24 1=4; 1=2; 5=82 2; 3; 8 2; 43; 8 G.192; 181/ h192; 181i 2

546 23 1=55 2; 52 52; 15 Z5 �A5 h300; 22i 2

547 23 1=5; 2=52; 4=5 24; 52 32; 5 A5 h60; 5i 1
548 23 1=5; 2=52; 4=5 24; 5 3; 52 A5 h60; 5i 1
549 23 1=5; 2=52; 4=5 2; 52 35; 5 A5 h60; 5i 2
550 23 1=5; 2=52; 4=5 2; 42; 5 2; 5; 6 S5 h120; 34i 1
551 23 1=5; 2=52; 4=5 2; 4; 5 2; 42; 52 Z42 ÌD5 h160; 234i 6
552 23 1=5; 2=52; 4=5 3; 152 32; 5 Z3 �A5 h180; 19i 1
553 23 1=5; 1=24; 4=5 2; 4; 5 24; 4; 5 Z42 ÌD5 h160; 234i ?

554 23 1=5; 1=24; 4=5 2; 4; 5 2; 43; 5 Z42 ÌD5 h160; 234i 4
555 23 1=5; 1=24; 4=5 2; 4; 5 22; 8; 10 G.320; 1582/ h320; 1582i 4

Table 21. Remaining product-quotient surfaces of general type with q D 0, pg D 3, and
K2 2 ¹23; : : : ; 32º whose minimality is not established.
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